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Advanced Discrete Structure

Lecture 4:
Generating Functions II



Outline

(2) Permutations
* Distribution of Objects " This Lecture
* More Applications




Generating Functions for
Permutations



GF for Permutations

* Suppose we have 2 objects: a, b
* There are 2 ways to arrange 1 object
* We may describe this by:

a+b

* There are 2 ways to arrange 2 objects
* We may describe this by:

ab + ba




GF for Permutations

* A possible GF for these terms could be :

1 +(a+b)x + (ab + ba) x?

 However, after simplification, we get :

1 + (a + b) x + (2ab) x?

so that the distinct permutations ab and ba
cannot be recognized



GF for Permutations

* Similarly, when we are interested only in the
number of permutations, we may want to

define some GF like :

F(x)=P(n,0) + P(n,1)x + P(n,2)x* + ...

* Unfortunately, there 1s no simple closed-form
expression for F(x)



GF for Permutations

* On the other hand, recall that :

(1+x)"=1+C(n1)x+ C(n?2)x?
+C(n,3) x> + ...
+ C(n, n-1) x* 1 +x"
= 1+P(n1)x/1!+Pn2)x*/2!
+P(n,3)x°/3! + ...
+ P(n, n-1) x"/ (n-1)!+ P(n,n) x"/ n!




GF for Permutations

* This motivates us to study another type of GF

* Precisely, to represent a sequence (a, a,, a,, ...),
the GF 1s defined as follows :

Fx)y=ay,ta;x/1'+a,x*/2'+a,x> /3! + ...

* This GF 1s called the exponential generating
function (EGF) of the sequence

* coefficient of x"=a,/ 7!



GF for Permutations

* Ex: (1+x)" 1s the EGF for
P»,0), P(n,1), ..., P(n,n)

e Ex: e 1s the EGF for
1,1,1,1, ...

* Ex: (1 -2x)7? is the EGF for

I, 1x3, 1x3x5, 1x3x5x%7, ...



GF for Permutations

* The EGF has interesting behavior

* Suppose we have one object

* The EGF for the number of permutations of this
object 1s :

1 +x

* But when we have n distinct objects (without
repetition), the EGF becomes :

(I +x)"




GF for Permutations

* Suppose we have p objects of the same kind
* The EGF for the number of permutations of this
object 1s :

1 +x+x2/2!+x3/3! +...+x/p!

* When we have 2 kinds of objects (with p and ¢g
repeats, respectively), the EGF 1s :

(1+x+x2/21+x3/31+..+x/p!) x
(1+x+x2/20 +x3/31+..+x1/q!)




GF for Permutations

* Ex: Suppose we have two objects of the first
kind, and three objects of another kind

The EGF 1s :

(1+1 ) (1 1—-|-2-|-£3
=1+ 1')x+ 1'1' +2')x2

+(1v21 2111+§)X3 1v3v 2v2v) (2v3v)x5




GF for Permutations

* Ex: Suppose we have n kinds of objects, each

with unlimited supply
The EGF 1s :
x  x2, X NI,
(1+1'+2v+3!+ ) = ar

* So how many ways to get » objects, when order
1s important?



GF for Permutations

* Ex: Consider all r-digit quaternary strings
(with digits 0, 1, 2, or 3)

How many of them contains at least one 1,
one 2, and one 3 ?

* Hint: What 1s the EGF for each of the digits ?



GF for Permutations

 The EGF for digit 0 1s: ¢*
 The EGF for digit 1 1s: e -1
 The EGF for digit 2 1s: e*-1
 The EGF for digit31s: e*-1

=» The EGF for quaternary strings with at least one
1, one 2, and one 3 1S :

e(e¥— 1) = e -3+ 3> - ¢
=» The desired answer is: 47— 3x 3"+ 3x2"—



GF for Permutations

* Ex: Consider all r-digit quaternary strings

How many contains even number of 0’s ?

How many contains even number of 0’s and
even number of 1°s ?

Hint : 2 6 _x
[+ XXX, _ete
21 4! 6! 2




GF for Permutations

 Ex: Let (ay, a;, a,, ...) be the sequence such that
a, 1s the number of ways to choose r or less
objects from r distinct objects and distribute
them 1nto n distinct cells, with objects in the
cell ordered

* Show that EGF of the sequence 1s: ¢*/ (1 — x)"



Distribution of Objects



Distribution of Objects

e In Lecture Notes 2, we have studied the case of
distributing objects into distinct positions

* In the following, we shall focus on the case of
distributing objects into non-distinct positions

* There are two cases :
1. when objects are distinct
2. when objects are non-distinct



Case 1: Distinct Objects

Before we study non-distinct positions, let us
revisit the case when positions are distinct

Suppose we have r distinct objects and » cells
Each cell can hold only any number of objects
All r objects are used

If ordering of objects within cell 1s not important,
# of ways 1s :

nr




Case 1: Distinct Objects

* Assume r > n, and each cell has at least 1 object
* All r objects are used

* If ordering of objects within cell 1s not important,
what will be # of ways ?

This 1s equivalent to finding # of
r-permutation of the » distinct cells,
with each cell appearing at least once




Case 1: Distinct Objects
 The EGF for the first cell 1s :

(%+;‘f+;‘? r.) = e—1

* EGF for permutation of n cells 1s :

(er=1)




Case 1: Distinct Objects

* To find the coefficient of x”, we see that :

(er-1)"= Zn: C(n,j) (-1y exn=))
= Z C(n, j) (—IYZ -(n—jy x

- Z,’f, Z C(n,j) (1Y (n—jy




Case 1: Distinct Objects

* Thus # of r-permutations of n cells, each cell
appearing at least once, 1s :

a,(n) = Z Cln, j) (-1 (n —jy

* This term 1s a multiple of n!  (Why?)
e Let S(r,n) =a(n)/n!
* What 1s the physical meaning of S(7,n) ?



Case 1: Distinct Objects

* S(7, n) is called Stirling number of the 2nd kind
* The table below shows some of the S(r, n) values :

n

r 1 2 3 4 5 6 7
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 | 15 1
7 1 63 | 301 | 350 | 140 | 21 1




Case 1: Distinct Objects

* Now, suppose we are distributing » objects into »
non-distinct cells, each cell can contain any
number of objects

= the # of waysis:

S»1)+S#2)+ ... + S(r, n)

* Here, we assume that S(Z, j) = 0 when i <;j



Case 1: Distinct Objects
* Recall that

\:|><

- a,(n)

\:‘x

n! S(r, n)

(e" - 1)=§
=2

* Then, we have : (see next page )



Case 1: Distinct Objects

e ...the coefficientof x/r! 1n

= (1) + (ex_1)2+ (ex—1)3+...
1! 2! 3!

ec -1 _1

is equal to S(r,1) + S(»,2) + ... + S(r, n) + ...

which 1s exactly the # ways to distribute r
distinct items into » non-distinct cells, for » < n




Case 2: Non-Distinct Objects

* Next, we will discuss the case of distributing
non-distinct objects into non-distinct cells

* In particular, we shall look at the partition of an
integer 1nto positive integral parts, in which
order of these parts 1s not important

* Ex: There are five different partitions of 4 :

4, 1+3,2+2, 1+1+2, 1+1+1+1



Case 2: Non-Distinct Objects

* Observe that in the polynomial

l+x+x2+x3+ ... +x"

the coefficient of x*is # ways of having £ 1°s in
a partition of integer » ; thus in

l+x+x2+x3+...

the coefficient of x*is # ways of having £ 1°s in
a partition of any integer at least £



Case 2: Non-Distinct Objects

* Similarly, in the polynomial

1 +x*+x*+ ... +xl]

the coefficient of x**is # ways of having £ 2’s in
a partition of integer » ; thus in

1 +x2+x*+x0+ ...

the coefficient of x**is # ways of having £ 2’s in
a partition of any integer at least 2k



Case 2: Non-Distinct Objects

* What 1s so special about the following function?

Fx)= (1+x+x>+x3+... ) X
(I1+x2+x*+x0+...) X
(I1+x>+x0+x°+...) X
(I1+x*+x3+x2+..) X

LX (1 + XX+ X+ L)

* It 1s the ordinary GF for the number of partitions
of r, with no parts exceeding »



Case 2: Non-Distinct Objects

* Note that the previous F(x) 1s equal to :

1

F(x)=
1-x)1-x>A-x>...(1 =x)

e Ex:

1

= 1 +x+2x*+ 3x> + 4x*
(1=x) (1 —x) (1 - x3) X2 3 A

+ 5x° + Tx6+ ...




Case 2: Non-Distinct Objects

* What 1s so special about the following function?

1
1-x)0-x>A-x>A-x%...

F(x)=

* It 1s the ordinary generating function for the
sequence (p,, p;, P, ---) Where p. denotes the
number of different partitions of an integer i



Case 2: Non-Distinct Objects

* What 1s so special about the following function?

1
(1 —x)(1-x>)(1 =x°)...(1 —x*

F(x)=

* It 1s the ordinary generating function for the
number of different partitions of an integer i
into odd parts, with no parts exceeding 2n+1



Case 2: Non-Distinct Objects

* What 1s so special about the following function?

1
1-x)1-xA-x)10-x")...

F(x)=

* It 1s the ordinary generating function for the
number of different partitions of an integer i
into odd parts



Case 2: Non-Distinct Objects

* What is so special about the following functions?

1+x)1+x>)A+x)...(1+xP

(1+x)(1+x) A +x)A+xH...

* The first one 1s the ordinary generating function
for number of different partitions of an integer i
into distinct parts, with no parts exceeding n

e How about the second one?



Case 2: Non-Distinct Objects

* What do you observe from the following ?

(1
A
1

o

+x) (1+x%) (1 +x°) (1 +x%) ..
-  (A=x) A-xY)

1-x (-2 1-2)

1

1-x)1-x)1-x) ...




Case 2: Non-Distinct Objects

* The previous equality indicates that
# ways to partition i into distinct parts
1s exactly equal to
# ways to partition i into odd parts

* Ex: To partition 6
into distinct parts: 6, 5+1, 4+2, 3+2+1

into odd parts: 5+1, 3+3, 3+1+1+1,
1+1+1+1+1+1



Case 2: Non-Distinct Objects

* From the following

(1-x)Q+x)A+x>) A +x%(1+xP)...
=(1-x)A+x>)A+x*H(1+xP)...
=(1-xHAQ+xYH (1 +x5...
= 1

we can conclude that there 1s exactly one way to
partition any integer into distinct 2 powers (How?)




Case 2: Non-Distinct Objects

* Directly from the previous identity, we see that

1
1+x)1+x)A+xHA+x3)...

l —x =

= (1 —-x+x*—-x+x*-...)X
(1—-x?+x*—x+x%—...) X
(1 -x*+x8—x12+x16— . )x -




Case 2: Non-Distinct Objects

* The previous equality shows that for any i > 1,
if we partition i into 2 powers, then

# ways when number of parts 1s odd
1s exactly equal to
# ways when number of parts 1s even
* Ex: To partition 5 into 2 powers
when # parts 1s odd: 2+2+1, 1+1+1+1+1
when # parts 1s even: 4+1, 2+1+1+1



