CS 5319
 Advanced Discrete Structure

Permutations and Combinations II

Outline

- Notation
- Rules of Sum and Product
- Permutations
- Combinations
- Distribution of Objects
* Stirling's Formula

Distribution of Objects

- A related topic is computing \# ways to distribute objects to different positions Different treatments should be applied 1. when objects are distinct or non-distinct

2. when positions are distinct or non-distinct

- Next we study the case with distinct positions
- non-distinct positions will be discussed later when we study generating functions

Distinct Objects

Distinct Objects

- Suppose we have r distinct objects and n cells
- Each cell can hold only 1 object
\rightarrow When $n \geq r$, \# of ways to put all objects into the cell is :

$$
P(n, r)
$$

\rightarrow When $r \geq n$, \# of ways to fill up the cells is :

$$
P(r, n)
$$

Distinct Objects

- Suppose we have r distinct objects and n cells
- Each cell can hold only any number of objects
\rightarrow If we don't consider the order of objects within the same cell, \# of ways is :

Distinct Objects

- Suppose we have r distinct objects and n cells
- Each cell can hold only any number of objects
\rightarrow If we also consider the order of objects within the same cell, \# of ways is :

$$
\frac{(n+r-1)!}{(n-1)!}
$$

How to get this ??

Distinct Objects

- Idea I: Think of this as:

- Idea II: Insert objects one by one. There are $n+j-1$ positions for the j th object

Distinct Objects

Ex:

Suppose we have 7 flags and 5 masts.
All flags must be displayed, but not all masts have to be used.

How many ways can we arrange the flags on the masts?
(Order of flags in the same mast is important)

Different Kinds of Objects

- Previously, we showed that for n objects with q_{1} objects are of the first kind, q_{2} objects are of the second kind,
q_{t} objects are of the t th kind.
\Rightarrow \# of n-permutation of these objects is :

$$
\frac{n!}{q_{1}!q_{2}!\ldots q_{t}!}
$$

Different Kinds of Objects

- This can be viewed as putting these n objects into n cells, each cell can hold only one object
- To put the objects into the cells :

1. There are $C\left(n, q_{1}\right)$ ways to put objects of 1 st kind
2. After that, there are $C\left(n-q_{1}, q_{2}\right)$ ways to put objects of 2nd kind
3. After that, there are $C\left(n-q_{1}-q_{2}, q_{3}\right)$ ways to put objects of 3rd kind
4. And so on ...

Different Kinds of Objects

- Thus \# ways to distribute objects into the cells is :

$$
\begin{aligned}
C\left(n, q_{1}\right) & \times C\left(n-q_{1}, q_{2}\right) \times C\left(n-q_{1}-q_{2}, q_{3}\right) \times \ldots \\
& \times C\left(n-q_{1}-q_{2}-\ldots-q_{t-1}, q_{t}\right)
\end{aligned}
$$

$$
=\frac{n!}{q_{1}!q_{2}!\ldots q_{t}!}
$$

Different Kinds of Objects

- Suppose we have only r objects ($n \geq r$) instead
- Each cell can still hold one object
\rightarrow \# ways to distribute the objects into the cells is:

$$
\begin{aligned}
C\left(n, q_{1}\right) & \times C\left(n-q_{1}, q_{2}\right) \times C\left(n-q_{1}-q_{2}, q_{3}\right) \times \ldots \\
& \times C\left(n-q_{1}-q_{2}-\ldots-q_{t-1}, q_{t}\right)
\end{aligned}
$$

$$
=\frac{n!}{q_{1}!q_{2}!\ldots q_{t}!(n-r)!}
$$

Non-Distinct Objects

Non-Distinct Objects

- We have r non-distinct objects and n cells
- Each cell can hold only 1 object
\rightarrow When $n \geq r$, \# of ways to put all objects into the cell is :

$$
C(n, r)
$$

\rightarrow When $r \geq n$, \# of ways to fill up the cells $=? ?$

Non-Distinct Objects

- We have r non-distinct objects and n cells
- Each cell can hold only any number of objects
\rightarrow \# of ways to put objects into the cells is :

$$
\begin{aligned}
& \frac{(n+r-1)!}{(n-1)!}! \\
= & C(n+r-1, r)
\end{aligned}
$$

Non-Distinct Objects

- We have r non-distinct objects and n cells
- Each cell holds at least one objects
(That is, we assume $r \geq n$)
\rightarrow \# of ways to put objects into the cells is :

$$
C(r-1, n-1)
$$

How about the case where each cell holds at least q objects ??

Non-Distinct Objects

Ex:
Five distinct letters are to be transmitted through a communication channel.
A total of 15 blanks are to be inserted between the letters, with at least 3 blanks between every two letters.
How many ways can the letters and blanks be arranged ?

Non-Distinct Objects

Ex:

There are $2 n+1$ seats in a congress, to be divided among three parties.

In how many ways will some party obtain a majority of the seats ?
In how many ways will the coalition of any two parties ensure a majority of the seats ?

Stirling's Formula

Stirling's Formula

- The values n ! or $\ln (n!)$ are frequently needed
- Exact calculation of these values are tedious
- In 1730, Stirling obtained an estimate for n !, which is now known as Stirling's formula or Stirling's approximation :

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Stirling's Formula

- Although the absolute error is unbounded as n increases, that is :

$$
\lim _{n \rightarrow \infty}\left[n!-\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right] \rightarrow \infty
$$

- The percentage error, however, is not :

$$
\lim _{n \rightarrow \infty}\left[n!/ \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right] \longrightarrow 1
$$

Stirling's Formula

Ex:

Value	Exact	Stirling	Error	\% Error
$1!$	1	0.9221	0.08	8
$2!$	2	1.919	0.081	4
$5!$	120	118.019	1.981	1.7
$100!$	9.33×10^{157}	9.32×10^{157}	7.8×10^{154}	0.08

Stirling's Formula

- To derive Stirling's formula, we will find a close estimate of $\ln (n!)$ using basic calculus
- Let us consider the curve $y=\ln x$

Stirling's Formula

- The area under the curve, from $x=1$ to $x=n$, is equal to :

$$
\int_{1}^{n} \ln x d x
$$

Stirling's Formula

- The area can be approximated by n trapeziums, so that

$$
\int_{1}^{n} \ln x \mathrm{~d} x>\ln (n!)-0.5 \ln n
$$

Stirling's Formula

- On the other hand, the area under the curve, from $x=1.5$ to $x=n$, is equal to :

Stirling's Formula

- Similarly, the latter area can be approximated by
- $n-1$ trapeziums (bounded by $x=k-0.5$, $x=k+0.5$, and tangent line at $(k, \ln k)$)
- a last rectangle of size $0.5 \ln n$

Stirling's Formula

- Thus we have

$$
\int_{1.5}^{n} \ln x \mathrm{~d} x<\ln (n!)-0.5 \ln n
$$

Stirling's Formula

- Combining the two inequalities, we have

$$
\int_{1.5}^{n} \ln x \mathrm{~d} x<\ln (n!)-0.5 \ln n<\int_{1}^{n} \ln x \mathrm{~d} x
$$

- This implies

$$
\ln (n!)=(n+0.5) \ln n-n+\delta_{n}
$$

where $1.5(1-\ln 1.5)=0.893<\delta_{n}<1$

Stirling's Formula

- By taking exponents on both sides,

$$
\begin{aligned}
n! & =n^{(n+0.5)} e^{-n} e^{\delta_{n}} \\
& =e^{\delta_{n}} \sqrt{n}\left(\frac{n}{e}\right)^{n}
\end{aligned}
$$

where $e^{0.893}<e^{\delta_{n}}<e$

- In fact, as n increases, $e^{\delta_{n}}$ will decrease monotonically, and approach the limit $\sqrt{2 \pi}$

