
CS 5319
Advanced Discrete Structure

Lecture 14:
Introduction to Group Theory IV



Outline
•Introduction
•Groups and Subgroups
•Generators
•Cosets (and Lagrange’s Theorem)
•Permutation Group (and Burnside’s Theorem)
•Group Codes



Codes
•A sequence of symbols is called a word
•The coding problem is to represent distinct

message using distinct words
•In particular, in digital communication, the

words are formed by 0 or 1

•A code is the set of words used for the distinct
messages in a certain scheme
•These words are called codewords



Codes
•There are a few reasons for designing codes

1. To save storage or communication time
Ex : Huffman, run-length, arithmetic, …

2. To detect error in transmission
Ex : Repetition, parity, checksum, …

3. To correct error in transmission
Ex : Golay, Reed-Solomon, Reed-Muller,

group, convolution, …



Block Codes
•A block code is a code whose codewords all

have the same length
•One reason for having block codes is for error

detection or error correction
•Let A = the set of all length-n binary words

= binary XOR operation on A
Ex : 10111  00101 = 10010

•Note that (A, ) is a group



Block Codes
•For any x in A, we define the weight of x,

denoted by w(x), to be # of 1’s in x
Ex : w(10111) = 4 , w(00101) = 2

•The distance between any x and y in A, denoted
by d(x, y), is the weight of x y
•That is, d(x, y) = w(x y)
 d(x, y) = d(y, x)

•Also, d(x, y) = # bits that x and y are different



Block Codes
Lemma 1 (Triangle Inequality) :

For any x, y, and z in A,
d(x, z) d(x, y) + d(y, z)

Proof :
First, w(u v) w(u) + w(v) [why?]
 w(x z) = w(x y y z)

w(x y) + w(y z)
Thus, d(x, z) d(x, y) + d(y, z)



Block Codes
•We now define the distance of a code, which is

closely related to its error-correction power

Definition :
The distance of a code G is the minimum
distance between any two words in G

•Now, suppose a word y is received from sender
•If y is in G, we assume y is the word sent
•If y is not in G, we assume the word x in G,

with d(x, y) minimized, is the word sent



Block Codes
•The previous decoding method is called the

minimum-distance decoding criterion

Theorem 1 :

A code of distance 2t + 1 can correct t or fewer
transmission errors if we use minimum-distance
decoding criterion



Block Codes
Proof : Suppose there are at most t errors

Let x = codeword sent, y = word received
z = codeword not equal to x

Then we have: d(x, y) t
Also, we have: d(x, z) 2t + 1
so that d(x, y) + d(y, z) 2t + 1
 For any z x, d(y, z) t + 1
 y is decoded correctly without ambiguity



Group Codes
•We now study a class of block codes called

group codes
•A subset G of A is called a group code if (G, )

is a subgroup of (A, )
•A = set of all length-n binary words

Ex :
{ 0000, 0011, 1101, 1110 } is a group code
{ 00000, 01110 } is also a group code



Group Codes
•The distance of a group code can be easily

determined based on the following theorem

Theorem 2 :

Let G be a group code, and x be the minimum-
weight non-zero codeword in G. Then,

distance of G is equal to w(x)



Group Codes
Proof :

First, since 0 (the word with all 0’s) is in G,
w(x) = d(x, 0) distance of G

However, for any y and z in G,
d(y, z) = w(y z) w(x) [why?]

 distance of G = miny,z d(y, z) w(x)

Thus, distance of G = w(x)



Group Codes
•For group codes, if we use minimum-distance

decoding criterion, there is an easy way to find
the codeword corresponding to the received word

•Firstly, suppose word y is received
•Corresponding codeword x in G should be

one that minimizes w(x y)
•Equivalently, if e is the word with smallest

weight in the coset G y
 e = y x , or x = y e



Group Codes
•Now, suppose that
•for each coset C of G, we remember its

smallest weight word eC

•For each y, we remember which coset C(y)
that y belongs to

 Then upon receiving y, we can decode it back
to the transmitted codeword x by :

x = y  eC(y)



Ex : Suppose we use the group code
G = { 00000, 00111, 11010, 11101 }

whose distance = 3 (thus can correct 1 error)
•Cosets of G :

G 00000 = { 00000, 00111, 11010, 11101 }
G 00001 = { 00001, 00110, 11011, 11100 }
G 00010 = { 00010, 00101, 11000, 11111 }
G 00100 = { 00100, 00011, 11110, 11001 }
G 01000 = { 01000, 01111, 10010, 10101 }
G 10000 = { 10000, 10111, 01010, 01101 }
G 10001 = { 10001, 10110, 01011, 01100 }
G 10100 = { 10100, 10011, 01110, 01001 }

Decoding
is unique

Decoding
not unique


