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* Permutation Group (and Burnside’s Theorem)
» Group Codes



Permutation Group

e Let Sbe aset with finite number of e ements

* A one-to-one function from Sonto itsalf Is
called a permutation

« We usethe notation : | abcd
bdca

to denote the permutation of theset{ a, b, c, d }
that mapsatob,btod, ctoc,anddtoa

* Note: Elementsin upper row can bein arbitrary order



Permutation Group

* Suppose the set Shas n elements
* Let A denotethen! permutations of S

» We define the binary operation - on Ato be
the composition of two functions

EX:

abcd abcd | abcd
bdca acbd | | bcda



Permutation Group

Lemma 1.

The binary operation- on A is closed

Proof :
Let 7, and n, be two permutations on S

To show &, - m,isin A, we only need to show no
two elements are mapped to the same element by
my e T, (Why?)



Permutation Group

Proof (cont) :
Suppose t, mapsato b, and w, mapsbtoc
= 71,° T, mapsatoc
Now for any x = a, m, will map x to somey
distinct fromb (since =, Isapermutation)

Similarly, 7, will map y to some z distinct from c
(since m, IS a permutation)

= 7w, 1, Will not map xtoc



Permutation Group

Lemma 2;

The binary operation - on A Is associative

Proof
Let ., 7,, and n; be three permutationson S
Our target 1sto show

(e M) = g = 7y (M0 73)



Permutation Group

Proof (cont) :

Supposethat m,mapsatob, w,mapsbtoc,
and m,mapsctod

Wehave (m,- m,) mapsbtod
2> (my° m,)e mymapsatod
On the other hand, ( nt, - ;) mMapsatoc
2> n,°(7m,° my) Mapsatod
Thus - Isan associative operation



Permutation Group
- [ abcd ~ (" abcd ~ [ abcd
"7 | adbc ] "2 | bacd ] ™~ | bdac
Then
_ [ abcd abcd abcd
(1010 1) ° M3 = ° -
dabc bdac acdb

T (1 1) = abcd abcd | | abcd
S adbe ) | adbe acdb



Permutation Group

heorem 1:

(A, - ) Isagroup

Proof :
1. - 1sboth closed and associative

2. There exists an identity permutation, which
maps each element into itsalf

3. Theinverse of © isonethat maps wt(a) into a



Permutation Group

Definition : A subgroup (G, - ) of (A, - ) Iscalled
a permutation subgroup

EX:

e N

G- abcd abcd abcd abcd
abcd )’ | bacd )| abdc ) > | badc

- J




Permutation Group

Definition :
A binary relation induced by a permutation
group (G, - ) Isarelation R such that
an element aisrelatedto b

< some permutation in G mapsato b

Ex : Inthe previous G,
ailsrelatedtob, bisrelated to a
cisrelatedtod, disrelatedto c




Permutation Group

heorem 2:

A binary relation R induced by a permutation
group (G, - ) Isan equivalence relation

Proof :
1. aRa (due to identity)
2. aRb=>DbRa (dueto inverse)
3. aRbandb Rc=>» aRc (dueto associative)



Permutation Group

Corollary :

A binary relation R induced by a permutation
group (G, - ) of Spartitionsthe elementsin S

EX:
The binary relation on the previous G partitions

theelements{ a, b, ¢, d } Into two equivalence
classes: {a,b} and { c,d}



Burnside’s Theorem

 Let y(m) denote the number of elementsthat are
Invariant under the permutation «t

heorem 3 (Burnside)

et R be the equivalence relation induced by a
permutation group (G, - ) of S

Then # classes that R partitions Sinto s

|G|Z\|f(ﬂ)




/

GG=+<

-

|

Burnside’s Theorem
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e Total number of Invariant elements
=4+2+2+0 =8
« #of equivalenceclasses = 8/ |G| =2
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Burnside’s Theorem

Proof
Let n(s) = # permutations that sisinvariant
Then we have

2, y(m) = 2,1

Let a and b be two elements that are in the same
equivalence classes

=> Exactly n(a) permutations maps a to b (why?)



Burnside’s Theorem

Proof (cont) : Thereasonisthat :

Supposed ={ n,, ,, M5, My, ... } @eadl n(a)
permutations that a is invariant, and rt 1S some
permutation that mapsato b (why n exits?)

ThenK={n-n,,m°mn,,m°M3, T 7y, ... }
contains n(a) permutations that mapsatob

Also for any n’ that mapsatob
ni-n’isind,sotha w’'=n-mwl-n’isinK
= Exactly n(a) permutations mapsatob



Burnside’s Theorem

Proof (cont) :

Now, let L={a,b,c,d,..., h} bethe elements
In the same classasa
Because each permutation in G maps a to some
elementinL = |[L|n(a) =|G]|
Then we have

|G[/|L] = n(@)=n()=... =n(h)
or

n@ +n(b) +n(c) +... +n(h) =| G|



Burnside’s Theorem

Proof (cont) :
Thus, for any eguivalence class,
sum of n(s) for al sinthat class=| G|

Immediately, we have

# equivalence class= 2_n(s) /|G|

seS



Burnside’s Theorem
Ex . Suppose an equilateral triangle has each of
Its vertices colored by one of the 5 colors

We consider two colorings to be equivalent
If after arotation, they become the same

For instance, first 2 colorings are equivalent,
but the third coloring is different from them

VANVARVAN
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Burnside’s Theorem

How many distinct colorings are there ?
Let Sbe the set of all 5° colorings

Let (G, - ) be permutation group such that
each permutation in G correspond to a
possible mapping of a coloring to another
due to a series of rotations

= G has 3 elements:
|dentity, Rotate by 120", Rotate by 240



Burnside’s Theorem

Answer (cont) :

To find out the number of distinct colorings, it 1s
the same as to find out how many equivalence

classes that will be obtained by the relation
iInduced by (G, - )

=» Since each class contains a particular set
of equivalent colorings

By Burnside, the number of classesis:
(53+5+5)/3 =45



Burnside’s Theorem

EX : Suppose a sguare has each of its vertices
colored by one of the 7 colors

We consider two colorings to be equivalent
If after arotation, they become the same

How many distinct colorings ?

BeEEyE



Burnside’s Theorem

ANSwer :

Let (G, - ) be apermutation group, such that G
contains all the possible permutations obtained
by a series of rotations

=>» G hasfour elements

Rotate by O, by 90, by 180", and by 270

=> By Burnside, the number of classesis:
(74+7+7°+7)/4 =616



Burnside’s Theorem

Ex: Let p=prime.
a = anumber coprimeto p

Suppose aregular p-gon has each of its
vertices colored by one of the a colors

We consider two colorings to be equivalent
If after arotation, they become the same

Q: How many distinct colorings ?



Burnside’s Theorem

A . Let G bethe p different rotations.
=>» By Burnside, the number of classesis:
(aP+a+a+...+a)/p

=@+((p-La)lp

Thisimpliesthat aP—a must be amultiple of p
= aP=a (modp) or a>!=1 (modp)

= A new proof of Fermat’s Little Theorem




Burnside’s Theorem

Ex : Let Sbethe set of all 10° five-digit number.

Two numbers in Sare considered equivalent
If one can read the other upside down

For example,

99861 and 19866 are equivalent
but 99861 and 66891 are not

Q: How many distinct numbers are there ?



Burnside’s Theorem

ANSwer :

Let (G, - ) be the permutation group such that G
contains all the possible permutations obtained
by a sequence of upside-down rotations

= G has 2 elements : identity, “upside-down”
where “upside-down” maps :

(1) anumber to itself when it is not readable
upside-down (e.g., 13567 to 13567)

(11) otherwise, a number to its equivalent



Burnside’s Theorem

Answer (cont) :
By Burnside, the # of equivalence classesis:
(10°+ (10°-5°) +3x 5%) /2 = 98475

e Here, 10°— 5° counts those numbers that
contanat leastone 2, 3,4, 5, or 7

« Here, 3 x 5% counts those numbers formed by
only O, 1, 6, 8, and 9 which are invariant
upside-down (must have 0/1/8 at the center)



