CS 5319 Advanced Discrete Structure

Lecture 13:

Introduction to Group Theory III

Outline

- Introduction
- Groups and Subgroups
- Generators
- Cosets (and Lagrange's Theorem)
- Permutation Group (and Burnside's Theorem)
- Group Codes

- Let S be a set with finite number of elements
- A one-to-one function from *S* onto itself is called a permutation
- We use the notation : $\begin{bmatrix} abcd \\ bdca \end{bmatrix}$

to denote the permutation of the set $\{a, b, c, d\}$ that maps a to b, b to d, c to c, and d to a

• Note: Elements in upper row can be in arbitrary order

- Suppose the set *S* has *n* elements
- Let A denote the n! permutations of S
- We define the binary operation \circ on A to be the composition of two functions

Ex:

$$\left(egin{array}{c} abcd \ bdca \end{array}
ight) \circ \left(egin{array}{c} abcd \ acbd \end{array}
ight) = \left(egin{array}{c} abcd \ bcda \end{array}
ight)$$

Lemma 1:

The binary operation • on A is closed

Proof:

Let π_1 and π_2 be two permutations on S.

To show $\pi_1 \circ \pi_2$ is in A, we only need to show no two elements are mapped to the same element by $\pi_1 \circ \pi_2$ (why?)

Proof (cont):

Suppose π_2 maps a to b, and π_1 maps b to c

 \rightarrow $\pi_1 \circ \pi_2$ maps a to c

Now for any $x \neq a$, π_2 will map x to some y distinct from b (since π_2 is a permutation)

Similarly, π_1 will map y to some z distinct from c (since π_1 is a permutation)

 $\rightarrow \pi_1 \circ \pi_2$ will not map x to c

Lemma 2:

The binary operation \circ on A is associative

Proof:

Let π_1 , π_2 , and π_3 be three permutations on S.

Our target is to show

$$(\pi_1 \circ \pi_2) \circ \pi_3 = \pi_1 \circ (\pi_2 \circ \pi_3)$$

Proof (cont):

Suppose that π_3 maps a to b, π_2 maps b to c, and π_1 maps c to d

We have $(\pi_1 \circ \pi_2)$ maps b to d

- \rightarrow $(\pi_1 \circ \pi_2) \circ \pi_3$ maps a to d
- On the other hand, $(\pi_2 \circ \pi_3)$ maps a to c
 - \rightarrow $\pi_1 \circ (\pi_2 \circ \pi_3)$ maps a to d

Thus • is an associative operation

Ex:

$$\pi_1 = \begin{pmatrix} abcd \\ adbc \end{pmatrix} \quad \pi_2 = \begin{pmatrix} abcd \\ bacd \end{pmatrix} \quad \pi_3 = \begin{pmatrix} abcd \\ bdac \end{pmatrix}$$

Then

$$(\pi_1^{\circ} \pi_2) \circ \pi_3 = \begin{pmatrix} abcd \\ dabc \end{pmatrix} \circ \begin{pmatrix} abcd \\ bdac \end{pmatrix} = \begin{pmatrix} abcd \\ acdb \end{pmatrix}$$

$$\pi_{1^{\circ}}(\pi_{2^{\circ}}\pi_{3}) = \begin{pmatrix} abcd \\ adbc \end{pmatrix} \circ \begin{pmatrix} abcd \\ adbc \end{pmatrix} = \begin{pmatrix} abcd \\ acdb \end{pmatrix}$$

Theorem 1:

 (A, \circ) is a group

Proof:

- 1. is both closed and associative
- 2. There exists an identity permutation, which maps each element into itself
- 3. The inverse of π is one that maps $\pi(a)$ into a

Definition : A subgroup (G, \circ) of (A, \circ) is called a permutation subgroup

Ex:

$$G = \left\{ \begin{pmatrix} abcd \\ abcd \end{pmatrix}, \begin{pmatrix} abcd \\ bacd \end{pmatrix}, \begin{pmatrix} abcd \\ abdc \end{pmatrix}, \begin{pmatrix} abcd \\ badc \end{pmatrix} \right\}$$

Definition:

A binary relation induced by a permutation group (G, \circ) is a relation R such that an element a is related to b

 \Leftrightarrow some permutation in G maps a to b

Ex: In the previous G,a is related to b, b is related to ac is related to d, d is related to c

Theorem 2:

A binary relation R induced by a permutation group (G, \circ) is an equivalence relation

Proof:

- 1. *a R a* (due to identity)
- 2. $a R b \rightarrow b R a$ (due to inverse)
- 3. a R b and $b R c \rightarrow a R c$ (due to associative)

Corollary:

A binary relation R induced by a permutation group (G, \circ) of S partitions the elements in S

Ex:

The binary relation on the previous G partitions the elements $\{a, b, c, d\}$ into two equivalence classes: $\{a, b\}$ and $\{c, d\}$

• Let $\psi(\pi)$ denote the number of elements that are invariant under the permutation π

Theorem 3 (Burnside):

Let R be the equivalence relation induced by a permutation group $(G, \, \, \circ \, \,)$ of S.

Then # classes that *R* partitions *S* into is :

$$\frac{1}{\mid G\mid} \sum_{\pi \in G} \psi(\pi)$$

$$G = \left\{ \begin{pmatrix} abcd \\ abcd \end{pmatrix}, \begin{pmatrix} abcd \\ bacd \end{pmatrix}, \begin{pmatrix} abcd \\ abdc \end{pmatrix}, \begin{pmatrix} abcd \\ badc \end{pmatrix} \right\}$$

Total number of invariant elements

$$=4+2+2+0=8$$

• # of equivalence classes = 8/|G| = 2

Proof:

Let $\eta(s) = \#$ permutations that s is invariant Then we have :

$$\sum_{\pi \in G} \psi(\pi) = \sum_{s \in S} \eta(s)$$

Let a and b be two elements that are in the same equivalence classes

 \rightarrow Exactly $\eta(a)$ permutations maps a to b (why?)

Proof (cont): The reason is that: Suppose $J = \{ \pi_1, \pi_2, \pi_3, \pi_4, \dots \}$ are all $\eta(a)$ permutations that a is invariant, and π is some permutation that maps a to b (why π exits?) Then $K = \{ \pi \circ \pi_1, \pi \circ \pi_2, \pi \circ \pi_3, \pi \circ \pi_4, \dots \}$ contains $\eta(a)$ permutations that maps a to b Also, for any π ' that maps a to b $\pi^{-1} \circ \pi$ is in J, so that $\pi' = \pi \circ \pi^{-1} \circ \pi'$ is in K \rightarrow Exactly $\eta(a)$ permutations maps a to b

Proof (cont):

Now, let $L = \{ a, b, c, d, ..., h \}$ be the elements in the same class as a

Because each permutation in G maps a to some element in $L \rightarrow |L/\eta(a)| = |G|$

Then we have:

$$|G|/|L| = \eta(a) = \eta(b) = \dots = \eta(h)$$

or

$$\eta(a) + \eta(b) + \eta(c) + ... + \eta(h) = |G|$$

Proof (cont):

Thus, for any equivalence class, sum of $\eta(s)$ for all s in that class = |G|

Immediately, we have:

equivalence class =
$$\sum_{s \in S} \eta(s) / |G|$$

Ex: Suppose an equilateral triangle has each of its vertices colored by one of the 5 colors

We consider two colorings to be equivalent if after a rotation, they become the same

For instance, first 2 colorings are equivalent, but the third coloring is different from them

Q: How many distinct colorings are there?

A: Let S be the set of all 5^3 colorings Let (G, \circ) be permutation group such that each permutation in G correspond to a possible mapping of a coloring to another due to a series of rotations

→ G has 3 elements:

Identity, Rotate by 120°, Rotate by 240°

Answer (cont):

To find out the number of distinct colorings, it is the same as to find out how many equivalence classes that will be obtained by the relation induced by (G, \circ)

→ Since each class contains a particular set of equivalent colorings

By Burnside, the number of classes is:

$$(5^3 + 5 + 5) / 3 = 45$$

Ex: Suppose a square has each of its vertices colored by one of the 7 colors

We consider two colorings to be equivalent if after a rotation, they become the same How many distinct colorings?

Answer:

Let (G, \circ) be a permutation group, such that G contains all the possible permutations obtained by a series of rotations

 \rightarrow G has four elements:

Rotate by 0°, by 90°, by 180°, and by 270°

→ By Burnside, the number of classes is :

$$(7^4 + 7 + 7^2 + 7) / 4 = 616$$

Ex: Let p = prime.

a = a number coprime to p

Suppose a regular *p*-gon has each of its vertices colored by one of the *a* colors

We consider two colorings to be equivalent if after a rotation, they become the same

Q: How many distinct colorings?

- A: Let G be the p different rotations.
 - → By Burnside, the number of classes is :

$$(a^p + a + a + ... + a) / p$$

= $(a^p + (p - 1) a) / p$

This implies that $a^p - a$ must be a multiple of p

- \Rightarrow $a^p \equiv a \pmod{p}$ or $a^{p-1} \equiv 1 \pmod{p}$
- → A new proof of Fermat's Little Theorem

Ex: Let S be the set of all 10^5 five-digit number.

Two numbers in *S* are considered equivalent if one can read the other upside down

For example,

99861 and 19866 are equivalent

but 99861 and 66891 are not

Q: How many distinct numbers are there?

Answer:

Let (G, \circ) be the permutation group such that G contains all the possible permutations obtained by a sequence of upside-down rotations

- → G has 2 elements: identity, "upside-down" where "upside-down" maps:
- (i) a number to itself when it is not readable upside-down (e.g., 13567 to 13567)
- (ii) otherwise, a number to its equivalent

Answer (cont):

By Burnside, the # of equivalence classes is:

$$(10^5 + (10^5 - 5^5) + 3 \times 5^2) / 2 = 98475$$

- Here, $10^5 5^5$ counts those numbers that contain at least one 2, 3, 4, 5, or 7
- Here, 3×5^2 counts those numbers formed by only 0, 1, 6, 8, and 9 which are invariant upside-down (must have 0/1/8 at the center)