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Generators



Generators

* Let (A, %) bean algebraic system where * is
a closed binary operation

 LetB={ a;,a,, ... } beasubset of A

* Let B, denote the subset of A which contains
(1) all elementsof B ; and
(2) theelementa, x a forala,a InB

» B, Iscalled the set generated directly by B



Generators

« Similarly, we let
B, = the set generated directly by B,
B.,, = the set generated directly by B,

 Let B" denotetheunionof B,, B, , ...
= (B, %) := the subsystem generated by B
= any element in B” is said to be generated by B

Note: x isaclosed operationon B®  (why?)



Generators
Ex . Consider the algebraic system (N, +).

Let B ={ 3,5}
> B, ={356810}
B, = {

3,5,6,8,09, 10, 11, 12,
13, 14, 15, 16, 18, 20}

B =N-{124,7}



Generators

 If B'= A, Biscalled agenerating set of (A, %)
Ex: { 1,3} isagenerating set of (N, +)

« When (A, %) isagroup, and (B", *) isfinite,
then (B", %) isasubgroup of (A, %) [why?]

Ex : A= al possible angular rotation
* = combination of two angular rotations
B={120°}, B = { 0°, 120°, 240° }
= (B, %) isasubgroup



Generators

* When agroup has a generating set of one
element, the group Is called acyclic group

Ex: (Z,,®,) Isacyclic group,
with generating set ={ 1}

Ex: (£ {0}, ®,) isacyclic group,
with generating set ={ 3}
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Generators
Lemmal:

All cyclic groups are commutative.

Proof . Let (A, %)= acyclic group
{a} = geneating set of (A, *)
=» each element in A is equal to & for some |
Since Isassociative, we have
a * ak = akx a
=>» All cyclic groups must be commutative




Generators

* Thereisan interesting problem that isrelated to
generator called addition chain problem

« Glven apositive integer n, aseguence
a, ay, ..., a
IS called an addition chain for n if
a,=1 a=n,
and each & Is the sum of two previous terms
(possibly equal)



Generators

Ex : Some addition chainsfor 9 are show below.

@ 1,2 3,4,5,6,7,8,9
(b) 1,2,4,8,9

(©) 1,2,3,4,5,9

(d 1,2,3,6,9



Generators

« Glven an integer n, the addition chain problem
IS to find the shortest addition chain for n

* Thisproblem is extremely interesting, and was
studied rather extensively

* We do not know how to find the shortest
chain, but there are two simple ways to find
relatively short chain



Generators

* Method 1 (Binary Method) :
We generate the chain for n in reverse order,
based on recursion, stopping when n = 1.
If n=even, recursively generaten/ 2
If n=odd, recursively generaten—1

Ex : Addition Chain for 45
1,2,4,5, 10, 11, 22, 44, 45 (9 steps)



Generators

* Method 2 (Factor Method) :

If n can be factored into p x g, we can find the
chainsfor p and g first, and use these chains to

construct achain for n

Supposechainforp: 1, p;, Py -5 Py
chanforq: 1,q,,0,, ..., Qs

> 01,0y, ..., 0y P10s, P20, -5 Py Og
ISachanfor n



Generators

 Ex: AdditionChainfor5: 1,2, 4,5
Addition Chainfor9: 1, 2,4, 8,9
=> Addition Chainfor 45 :
1,2,4,8,9, 18, 36, 45 (8 steps)
* |t isknown that the length of the shortest
addition chain for n is bounded by :
[ log, n+log,v(n) — 2.13, log, n+ v(n)—1]
where v(n) = #1’s1n binary representation of n



Cosets and Lagrange’s Theorem



Cosets

_et (A, X) be an algebraic system where * isa
pinary operation (not necessarily closed)
_et abean element in A, and H be a subset of A

Definition (Cosets) :

axH  ={ a*xx| xe H} iscaledthe
left coset of H with respect to a

H*xa:={ xXxa| xe H} iscalled the
right coset of H with respect to a




Cosets

EX:
Suppose an initial rotation of either 0°, 120°, or
240° 1sfollowed by a subsequent rotation of 60°.
What are the possible total angular rotations?
= Thisisequal to the right coset of

{ 0°,120°, 240° } with respect to 60°



Cosets

« Suppose (A, *) Isagroup, and (H, %) isa
subgroup of (A, *)

Theorem 1 :

Leta * Hand b * H betwo cosets of H.
Then it follows that elther
(1) a*x Hand b *x Haredigoint, or
(2) they are identical




Cosets

Proof . Suppose they are not digoint
=>» there exists acommon element, say f
=> thereexist h, and h, iInH such that
f=a*h,=Dbxh,
sothat a = b % h, x h;
Now, forany xina * H,xmustbeinb x H,
since x=a* hy= b * hy x h, x h7!
= b*h, forsomeh;andh,inH



Cosets

Proof (cont) :
Thus, we have
a*xHc bxH
Similarly, we have
b*xH c axH

=» the two cosets are identical



L agrange’s Theorem

* Suppose (A, *x) isafinitegroup, and (H, x) isa
subgroup of (A, *)
Fact . Any coset of H hasthe same sizeas H

Theorem 2 (Lagrange)

The order of any subgroup of afinite group
divides the order of the finite group




L agrange’s Theorem

Proof . Suppose (A, *) isafinite group,
and (H, *) isasubgroup of (A, *)
=> ldentity element e must bein H
= For each element ain A,
alsintheleft coseta x H
=> Let r be# of distinct |eft cosets of H

Since each element 1S 1N some coset of H,
and each coset has equal size =» r |H| = |A|




L agrange’s Theorem

Corollary :

Suppose the order of agroup G iIs prime.
Then we have .
1. Thereisno non-trivial subgroup of G

2. Any set with one element (except identity)
ISagenerating set of G

3. Gisacyclic group




L agrange’s Theorem

Ex: (Z;,®,)Isagroup of order 7.

1. Theonly subgroupsof ( Z,, ®- ) are:
({0} ,®;)and(Z;, D)
2. Any element (except 0) Is agenerator.
For instance, from{ 2}, we can generate
2,4,6,1,3,50
3. From (2), weseethat ( Z,, ®,) Iscyclic



