Advanced Discrete Structure Homework 7 Tutorial

Simon Chang

Question 1

Let *L* be a regular language. Define L^{REV} to be the language $L^{\text{REV}} = \{S \mid S \text{ is the reverse of some string in L}\}$ Show that L^{REV} is regular.

EX: If "001" is in *L*, "100" is in *L*^{REV}.

Question 1

Hint: Given the DFA for *L*, show that it can be modified to an NFA for L^{REV} . To describe your idea, please use the following DFA as an example (where the leftmost state is the start state).

Question 2

EX: 001110, 110111001101

Show that the language $\{1^x \mid x \text{ is prime}\}$ is non-regular.

Hint: Use pumping lemma.

A palindrome is a string that can be read forward and backward in the same way. For example, "00100" and "010010" are palindromes.

Prove that the language {S | S is a palidrome} is non-regular.

Hint: Use pumping lemma.

Question 5 (Challenge)

Let

$\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$ $\Sigma_3 \text{ contains all size 3 columns of 0s and 1s.}$ A string in Σ_3 gives three rows of 0s and 1s.

Question 5 (Challenge)

Consider each row to be a binary number and let $B = \{\omega \in \Sigma_3^* \mid \text{the bottom row of } \omega \text{ is the sum of top two rows} \}$

For example,

$\begin{bmatrix} 0\\0\\1\end{bmatrix} \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} \begin{bmatrix} 1\\1\\0\\0\end{bmatrix} \in B \text{ but } \begin{bmatrix} 0\\0\\1\end{bmatrix} \begin{bmatrix} 1\\0\\1\\1\end{bmatrix} \notin B.$

Question 5 (Challenge)

Show that *B* is regular. (*Hint*: Working with B^{REV} is easier. You may assume the result claimed in question 1.)

Question 6 (Challenge)

Let L_1 and L_2 be two regular languages. Prove that $L_1 \cap L_2$ is also regular.

Hint: For any regular language, we can build a DFA that accepts it.