Advanced Discrete Structure Homework 6 Tutorial

Simon Chang

Let (*A*,*) be a semigroup.

Show that, for a, b, c in A, if a * c = c * a and b * c = c * b, then (a * b) * c = c * (a * b).

Notice that (A,*) is a semigroup. Things seem to be usually true may be not true here.

Let (A,*) be a monoid such that for every x in A, x * x = e, where e is the identity element. Show that (A,*) is a abelian group.

Like question 1, things seem to be usually true may not be true here.

<u>Euestion</u> 3

Let (H,\cdot) and (K,\cdot) be subgroups of a group (G,\cdot) . Let $HK = \{h \cdot k \mid h \in H, k \in K\}$ Show that (HK,\cdot) is a subgroup if and only if HK = KH.

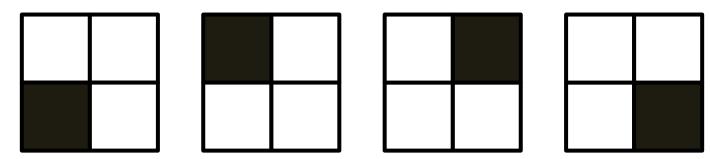
Question 4

The order of an element a in a group is denoted to be the least positive integer msuch that $a^m = e$, where e is the identity element. (If no positive power of a equals e, the order of a is denoted to be infinite.) Show that, in a finite group, the order of an element divides the order of the group.

You can use Burnside's Theorem in the following questions.

Question 5(a)

Determine the number of distinct 2×2 chessboards whose cells are painted white and black. Two chessboards are considered distinct if one cannot be obtained from another through rotation.



Repeat part (a) for 4×4 chessboards.

Question 6

Consider a cube with each face colored by one of the *n* colors. In how many distinct ways can the cube be colored?

(Two colorings are equal if one can be transformed to the other by rotating the cube.)

Hint: There are 24 kinds of rotations!