Advanced Discrete Structure Homework 6 Solution

Simon Chang

Let (A,*) be a semigroup.

Show that, for *a*, *b*, *c* in *A*, if a * c = c * a and b * c = c * b, then (a * b) * c = c * (a * b).

Since it's a semigroup, the only property we can use is the associative property.

$$(a * b) * c = a * (b * c) = a * (c * b)$$

= $(a * c) * b = (c * a) * b = c * (a * b)$

Let (A,*) be a monoid such that for every x in A, x * x = e, where e is the identity element. Show that (A,*) is a abelian group.

We have to show that a * b = b * a for any $a, b \in A$.

Again, we can only use the associative property.

Since $b * a \in A$, (b * a) * (b * a) = e.

$$a * b = (a * b) * (b * a) * (b * a)$$

= $(a * a) * (b * a) = b * a$

Let (H,\cdot) and (K,\cdot) be subgroups of a group (G,\cdot) . Let $HK = \{h \cdot k \mid h \in H, k \in K\}$ Show that (HK,\cdot) is a subgroup if and only if HK = KH.

 (HK,\cdot) is a subgroup $\rightarrow HK = KH$.

1. Show that for any member $x \in HK$, $x \in KH$. **2.** Show that for any member $x \in KH$, $x \in HK$.

1. Show that for any member $x \in HK$, $x \in KH$.

For any $x = h \cdot k$ in HK, $\exists h' \in H, k' \in K$ s.t. $(h \cdot k) \cdot (h' \cdot k') = e$

$$(h \cdot k) \cdot (h' \cdot k') \cdot (k')^{-1} \cdot (h')^{-1}$$
$$= (h \cdot k) \cdot h' \cdot (h')^{-1} = h \cdot k$$

$$(h \cdot k) \cdot (h' \cdot k') \cdot (k')^{-1} \cdot (h')^{-1} = e \cdot (k')^{-1} \cdot (h')^{-1} = (k')^{-1} \cdot (h')^{-1}$$

$$h \cdot k = (k')^{-1} \cdot (h')^{-1} \in KH$$

2. Show that for any member $x \in KH$, $x \in HK$.

$$(k \cdot h) \cdot (h^{-1} \cdot k^{-1}) = e$$

Since $(h^{-1} \cdot k^{-1}) \in HK$, $\exists (h' \cdot k') = (h^{-1} \cdot k^{-1})^{-1}$.
 $(k \cdot h) \cdot (h^{-1} \cdot k^{-1}) \cdot (h' \cdot k') = e \cdot h' \cdot k'$
 $= h' \cdot k'$
 $(k \cdot h) \cdot (h^{-1} \cdot k^{-1}) \cdot (h' \cdot k') = k \cdot h \cdot e$
 $= k \cdot h$
 $k \cdot h = h' \cdot k' \in HK$

 (HK, \cdot) is a subgroup $\leftarrow HK = KH$.

Test whether · is a closed operation on *HK*.
Whether the identity element is in *HK*.
Whether each element in *HK* has an inverse.

1. Test whether \cdot is a closed operation on HK.

For any $h_1, h_2 \in H, k_1, k_2 \in K$, $\exists h_3 \in H, k_3 \in K \text{ such that:}$ $(h_1 \cdot k_1) \cdot (h_2 \cdot k_2) = h_1 \cdot (h_3 \cdot k_3) \cdot k_2$ H and K are subgroups: $(h_1 \cdot h_3) \in H, (k_3 \cdot k_2) \in K$ $\rightarrow (h_1 \cdot h_2) \cdot (k_1 \cdot k_2) \in HK$

2. Whether the identity element is in *HK*.

H is a subgroup → *H* has a identity element *e*. *K* is a subgroup → *K* has a identity element *e*. $e \cdot e \in HK$

For any $h \in H, k \in K$: $(h \cdot k) \cdot (e \cdot e) = (e \cdot e) \cdot (h \cdot k) = h \cdot k$

3. Whether each element in *HK* has an inverse.

H is a subgroup → h ∈ *H* has an inverse h^{-1} . *K* is a subgroup → k ∈ *K* has an inverse k^{-1} . $(h \cdot k) \cdot (k^{-1} \cdot h^{-1}) = (k^{-1} \cdot h^{-1}) \cdot (h \cdot k) = e$ HK = KH $(k^{-1} \cdot h^{-1}) \in HK$

The order of an element a in a group is denoted to be the least positive integer m such that $a^m = e$, where e is the identity element. (If no positive power of a equals e, the order of a is denoted to be infinite.) Show that, in a finite group, the order of an element divides the order of the group.

Let the order of $a \in (A,*)$ be $m, a^m = e$. ($\{a, a^2, a^3, \dots, a^m\},*$) is a subgroup of (A,*).

The size of $\{a, a^2, a^3, \dots, a^m\}$ is m. By Lagrange's Theorem, m divides |A|.

Question 5(a)

Determine the number of distinct 2×2 chessboards whose cells are painted white and black. Two chessboards are considered distinct if one cannot be obtained from another through rotation.

Question 5(a)

4 kinds of rotation:

(Cells with the same number must have the same color.)

Rotate 90° left or right:

Question 5(a)

Rotate 180°:

Use Burnside's Theorem: $\frac{2^4 + 2 + 2 + 2^2}{4} = 6$

Question 5(b)

Repeat part (a) for 4×4 chessboards.

Question 5(b)

4 kinds of rotation:

Rotate 0°:						
	1	2	3	4		
	5	6	7	8		
	9	10	11	12		
	13	14	15	16		

Rotate 90° left or right:

1	2	3	1
3	4	4	2
2	4	4	3
1	3	2	1

Question 5(b)

Rotate 180°:

Use Burnside's Theorem: $\frac{2^{16} + 2^4 + 2^4 + 2^8}{4} = 16456$

Consider a cube with each face colored by one of the *n* colors. In how many distinct ways can the cube be colored?

(Two colorings are equal if one can be transformed to the other by rotating the cube.)

Do nothing:

n^6

Holding 2 faces and rotate it by 90°: $3 \times 2 \times n^3$

Holding 2 faces and rotate it by 180°: $3 \times n^4$

Holding 2 edges and rotate it by 180°: $6 \times n^3$

Holding 2 vertices and rotate it by 120°: $4 \times 2 \times n^3$

The answer:

$$\frac{n^6 + 3n^4 + 12n^3 + 8n^2}{24}$$