CS5319 Advanced Discrete Structure ## Homework 6 Due: 3:20 pm, December 29, 2011 (before class) - 1. Let (A, *) be a semigroup. Show that, for a, b, c in A, if a * c = c * a and b * c = c * b, then (a * b) * c = c * (a * b). - 2. Let (A, *) be a monoid such that for every x in A, x*x = e, where e is the identity element. Show that (A, *) is a abelian group. - 3. Let (H,\cdot) and (K,\cdot) be subgroups of a group (G,\cdot) . Let $$HK = \{h \cdot k \mid h \in H, k \in K\}.$$ Show that (HK, \cdot) is a subgroup if and only if HK = KH. - 4. The *order* of an element a in a group is defined to be the least positive integer m such that $a^m = e$, where e is the identity element. (If no positive power of a equals e, the order of a is defined to be infinite.) Show that, in a finite group, the order of an element divides the order of the group. - 5. (a) Determine the number of distinct 2 × 2 chessboards whose cells are painted white and black. Two chessboards are considered distinct if one cannot be obtained from another through rotation. - (b) Repeat part (a) for 4×4 chessboards. - 6. Consider a cube with each face colored by one of the n colors. In how many distinct ways can the cube be colored? (Two colorings are equal if one can be transformed to the other by rotating the cube.)