Advanced Discrete Structure Homework 5 Tutorial

Simon Chang

For each m greater than 1, how many primes are there in the closed interval [m! + 2, m! + m]? Explain your answer.

Let S(m) be the smallest positive integer n for which there exists an increasing sequence of integers

 $m = a_1 < a_2 < \dots < a_t = n$ such that $a_1 a_2 \dots a_t$ is a perfect square. (If m is a perfect square, we can let t = 1 and n = m.)

For example, S(2) = 6 because the best such sequence is $a_1 = 2$; $a_2 = 3$; $a_3 = 6$. m S(m) m S(m)

Question 2 (a)

Show that S(m) exists for each $m \ge 1$.

Hint: Show that there is at least one such sequences $a_1, a_2, ..., a_t$ for each m.

*a*_t doesn't have to be the smallest possible one.

Question 2 (b)

Prove that $S(m) \neq S(m')$ whenever 0 < m < m'.

Hint: Prove by contradiction.

Assume that *a* and b are integers not divisible by the prime p, establish the following:

(a) If $a^p \equiv b^p \pmod{p}$, then $a \equiv b \pmod{p}$.

(b) If $a^p \equiv b^p \pmod{p}$, then $a^p \equiv b^p \pmod{p^2}$.

[**Hint**: by (a), a = b + pk for some k;

show that p^2 divides $a^p - b^p$.]

If $a^p \equiv b^p \pmod{p}$, then $a \equiv b \pmod{p}$.

Question 3 (b)

If $a^p \equiv b^p \pmod{p}$, then $a^p \equiv b^p \pmod{p^2}$. [Hint: by (a), a = b + pk for some k; show that p^2 divides $a^p - b^p$.]

Prove that if $n^j \equiv 1 \pmod{m}$ and $n^k \equiv 1 \pmod{m}$, then $n^{\gcd(j,k)} \equiv 1 \pmod{m}$

Hint: Properties of GCD.

Decrypt the ciphertext

1485 2063 1244 2259 457 1503

that was encrypted using the RSA algorithm with key (n, k) = (2419, 211).

(You can write a program to save some time.)

Question 6 (Challenge)

Show that for all n > 1, $2^n \not\equiv 1 \pmod{n}$.