CS5319 Advanced Discrete Structure

Homework 5

Due: 3:20 pm, December 06, 2011 (before class)

- 1. For each m greater than 1, how many primes are there in the closed interval [m!+2, m!+m]? Explain your answer.
- 2. Let S(m) be the smallest positive integer n for which there exists an increasing sequence of integers

 $m = a_1 < a_2 < \dots < a_t = n$

such that $a_1a_2\cdots a_t$ is a perfect square. (If *m* is a perfect square, we can let t = 1 and n = m.) For example, S(2) = 6 because the best such sequence is $a_1 = 2, a_2 = 3, a_3 = 6$. The first few values of S(m) are as follows:

m	1	2	3	4	5	6	7	8	9	10	11	12
S(m)	1	6	8	4	10	12	14	15	9	18	22	20

- (a) Show that S(m) exists for each $m \ge 1$.
- (b) Prove that $S(m) \neq S(m')$ whenever 0 < m < m'.
- 3. Assume that a and b are integers not divisible by the prime p, establish the following:
 - (a) If $a^p \equiv b^p \pmod{p}$, then $a \equiv b \pmod{p}$.
 - (b) If $a^p \equiv b^p \pmod{p}$, then $a^p \equiv b^p \pmod{p^2}$. *Hint:* By (a), let a = b + pk for some k, and then show that p^2 divides $a^p - b^p$.
- 4. Prove that if $n^j \equiv 1 \pmod{m}$ and $n^k \equiv 1 \pmod{m}$, then

$$n^{gcd(j,k)} \equiv 1 \pmod{m}.$$

Hint: Properties of GCD.

5. Decrypt the ciphertext

$1485\ 2063\ 1244\ 2259\ 457\ 1503$

that was encrypted using the RSA algorithm with key (n, e) = (2419, 211). (You can write a program to save some time.)

6. (Challenging: No marks) Show that for all n > 1, $2^n \not\equiv 1 \pmod{n}$.