Advanced Discrete Structure Homework 2 Tutorial

Simon Chang

Use binomial expansions or combinatorial arguments to evaluate the following sums:

(a)
$$\sum_{k=0}^{m} {\binom{n}{k}} {\binom{n}{r+k}}$$

(b) $\sum_{k=0}^{r} (-1)^{k} {\binom{n}{k}} {\binom{n}{r-k}}$
(c) $\sum_{k=0}^{n} 2^{k} {\binom{n}{k}}$

Binomial expansion:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Two possible way to solve by GF: 1. Find the coefficient of some x^k . 2. Assign x with some value.

Find the coefficient of x^{12} in x+3 $\overline{1-2x+x^2}$

Two possible ways: 1. Polynomial division. 2. $(1 - 2x + x^2)^{-1} = ?$

Question 3 (a)

Find the ordinary generating function of the sequence $(a_0, a_1, a_2, ...)$ where a_r is the number of ways in which the sum r will show when two distinct dice are rolled, with the first one showing even and the second one showing odd.

EX:

7 = 2 + 5 = 4 + 3 = 6 + 1

Question 3 (b)

Find the ordinary generating function of the sequence $(a_0, a_1, a_2, ...)$ where a_r is the number of ways in which the sum r will show when 10 distinct dice are rolled, with five of them showing even and the other five showing odd.

EX:

You can imagine the list of the generating functions of all the possible cases.

How many ways are there to collect \$24 from 4 children and 6 adults if each person gives at least \$1, but each child can give at most \$4 and each adult at most \$7?

EX:

Children: 2, 2, 3, 4 Adults: 1, 1, 2, 2, 2, 5

You may need this: $\frac{1 - x^{m+1}}{1 - x} = 1 + x + x^2 + \dots + x^m$

Find the exponential generating function with:

(a)
$$a_r = 1/(r + 1)$$

(b) $a_r = r!$

Find the number of n-digit strings
generated from the alphabet {0, 1,
2, 3, 4} whose total number of 0's
and 1's is even.
EX:

0 2 4 4 3 2 **0** 1 4 **0** 3

Using exponential generating functions! Two cases:

- 1. odd 0's and odd 1's
- 2. even 0's and even 1's

Question 7 (Challenge)

Show that the number of partitions of n is equal to the number of partitions of 2n into n parts.

(Hint: Use Ferrers graph.)

Partition: Non-distinct objects Non-distinct groups

Question 8 (Challenge)

Show that for any s > 1,

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \equiv \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

The sum of the left-hand side is popularly known as the Riemann zeta function, $\zeta(s)$, and the overall identity is known as the Euler product formula.