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Question 1

Use binomial expansions or combinatorial
arguments to evaluate the following sums:

(@) Xreo(e) (3
(b) Xr—o(=D*(M)(.")
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(@) Zi=o() (i)
— the coefficient of x” in (1 + x~ )™ (1 + x)"
1+x\
A+xHmA +x)" = ( ) (1+x)"
L (1 + X)m+n
— v

m+in

— the coefficient of x': (m+r



Question 1

(b) r=o(—D* (D))
—> the coefficient of x" in (1 — x)™(1 + x)"
(1—2)"(1+x)"=(1—-x)"

— the coefficient of x':

n
(—1)"/? (r/Z)' r is even
0 r is odd



Question 1
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Question 2

Find the coefficient of x'% in
x+ 3

1—2x + x2




Question 2
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The coefficient of x1%:
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Question 3 (a)

Find the ordinary generating function of the
sequence (ag, A4, dy, ... ) where a, is the number
of ways in which the sum r will show when two
distinct dice are rolled, with the first one showing
even and the second one showing odd.
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Question 3 (b)

Find the ordinary generating function of the
sequence (ag, A4, dy, ... ) where a, is the number
of ways in which the sum r will show when 10
distinct dice are rolled, with five of them showing
even and the other five showing odd.



Question 3 (b)

E for even, O for odd:

EEEEEOOOOO: (x2 + x* + x©)5(x! + x3 + x5)5
EOEOEOQEOEO: (x2 + x* + x6)5(x! + x3 + x5)5
EEOOEQEQOE: (x2 + x* + x6)5(x! + x3 + x5)5

|
The sum:sll—(;"(x2 x* +x9)°(xt +x3 +x
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Question 4

How many ways are there to collect $24 from 4
children and 6 adults if each person gives at
least $1, but each child can give at most $4 and
each adult at most $72



Question 4
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Question 4

(1—xMH*=1—4x* + 6x% — 4x12% + x1°
(1—x7)0=1—6x7 + 15x™ — 20x?* + 15x28 — 6x3° 4+ x*?
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Question 5

Find the exponential generating function with:
(a) a = 1/(r + 1)
(b) a,, = 7!
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Question 6

Find the number of n-digit strings generated from
the alphabet {0, 1, 2, 3, 4} whose total number
of O's and 1's is even.



Question 6

The number of O’s and 1’s are both even:
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Question 6

The number of O’s and 1’s are both odd:

3 s 2 P 3 3
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Question 6

The sum:
eSX . e3X + eX K eSX . e3X 4+ eX eSX 4+ eX
4 4 e 2
n

The coefficient of % is:

5n 41
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Question 7 (Challenge)

Show that the number of partitions of n is equal
to the number of partitions of 2n into n parts.

(Hint: Use Ferrers graph.)



Question 7 (Challenge)
To divide 2n objects into n groups:



A Interesting Fact about Ferr’s Graph

The number of partitions with no one larger than k

The number of partitions with no more than k groups



Question 8 (Challenge)

Show that for any s > 1,

p prime

The sum of the left-hand side is popularly known
as the Riemann zeta function, ((s), and the overall
identity is known as the Euler product formula.



Question 8 (Challenge)
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8 (Challenge)

Question




Question 8 (Challenge)
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Question 8 (Challenge)




Question 8 (Challenge)

Repeating this:

T2

And we can get:

p prime



