CS 5319
 Advanced Discrete Structure

Lecture 18:
Handling Difficult Problems

Outline

- Decision vs Optimization
- NP-Hard Problems
- Dealing with NP-Hard Problems
- Exact Algorithm
- Randomized Algorithm
- Approximation Algorithm (today's focus)

Decision vs Optimization

Decision Problems

- Last time, we have talked about decision problems, whose answer is either YES or NO
- Ex: Peter gives us a map $G=(V, E)$, and he asks us if there is a path from A to B whose length is at most 100
- Ex : Your sister gives you a number, say 1111111111111111111 (19 one's), and asks you if this number is a prime

Optimization Problems

- A more natural type of problem is called optimization problems, in which we want to obtain a best solution
E.g., Peter gives us a map $G=(V, E)$, and he asks what is the length of the shortest path from A to B
- Usually, the answer to an optimization problem is a number

Decision vs Optimization

- Decision problem and optimization problem are closely related :
(1) Peter gives us a map $G=(V, E)$, and he asks what is the length of the shortest path from A to B
(2) Peter gives us a map $G=(V, E)$, and he asks us if there is a path from A to B with length at most k

Decision vs Optimization

- We see that if Problem (1) can be solved, we can immediately solve Problem (2)
- In general, if the optimization version can be solved, the corresponding decision version can be solved!
- What if its decision version is known to be NP-complete ??

Decision vs Optimization

- For example, the following is a famous optimization problem called Max-Clique :

Given an input graph G, what is the size of the largest clique in G ?

- Its decision version, Clique, is NP-complete:

Given an input graph G , is there a clique of size at least k ?

NP-Hard Problems

NP-Hard

- If the decision version is NP-complete, then it is unlikely that the optimization problem has a polynomial-time algorithm
- We call such optimization problem an NPhard problem
- Perhaps no polynomial-time algorithm exists ... Should we give up solving NP-hard problems?

Dealing with NP-Hard Problems

- Although a problem is NP-hard, it does not mean that it cannot be solved
- At least, we can try naïve brute force search, only that it needs exponential time
- Other common strategies :
- "Faster" Exact Algorithm
- Randomized Algorithm
- Approximation Algorithm

Exact Algorithms

- Given a graph G with n vertices,
- a brute force approach to solve Max-Clique problem is to select every subset of G, and test if it is a clique
- Running time: $\mathrm{O}\left(2^{n} n^{2}\right)$ time
- Though time is exponential, it works well when n is small, and we can improve it ...
- Tarjan \& Trojanowski [1977]: O(1.26 $\left.{ }^{n}\right)$ time

FPT Algorithms

- A similar (and better) idea is to find "fixed parameter tractable" algorithms
- The running times of such algorithms are only exponential in the size of a fixed parameter, but not exponential in the size of input
Ex: The vertex cover problem, which finds the smallest set S of vertices so that at least one endpoint of each edge belongs to S, can be solved in $\mathrm{O}\left(|S| n+1.274{ }^{|S|}\right)$ time

Randomized Algorithms

- Use randomization to help
- Idea 1: Design an algorithm that answers correctly most of the time (but sometimes may give wrong answer), and it always run in polynomial time
- Idea 2: Design an algorithm that always give a correct answer, runs mostly in polynomial-time (but sometimes runs in exponential time)

Approximation Algorithms

Approximation Algorithms

- Target: always runs in polynomial time
- Give-ups: may not find optimal solution ...
- Yet, we want to show that the solution we find is "close" to optimal
- E.g., in a maximization problem, we may have an algorithm that always returns a solution at least half the optimal
- How can we do that ??
- (when we don't even know what optimal is ??)

Example: Vertex Cover

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, we want to select the minimum \# of vertices such that each edge has at least one vertex selected
- Real-life example:
- edge:
road
- vertex : road junction
- selected vertex: guard
- This problem is NP-hard

Example: Vertex Cover

- Let us consider the following algorithm:

1. $C=$ an empty set
2. while (there is edge in G) \{

Pick an edge, say (u, v);
Put u and v into C;
Remove u and v from G, and remove all edges adjacent to u or v;
\}
3. return C

Example Run

original G

Example Run

Picking (a,b)

$$
C=\{\mathrm{a}, \mathrm{~b}\}
$$

Example Run

Picking (c,g)

$$
C=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~g}\}
$$

Example Run

Picking (d,f)

$$
C=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~g}, \mathrm{~d}, \mathrm{f}\}
$$

Example Run

Picking (h,i)

(e)

$$
C=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~g}, \mathrm{~d}, \mathrm{f}, \mathrm{~h}, \mathrm{i}\}
$$

Example: Vertex Cover

- What is so special about C ?
- Vertices in C must cover all edges !!
- But ... it may not be the smallest one
- How far is it from the optimal ?
- At most 2 times (why??)
- Because each edge can only be covered by its endpoints \rightarrow in each iteration, one of the selected vertex must be in the optimal vertex cover

Example: Vertex Cover

- Another algorithm, perhaps a more natural one, is to select the vertex that covers most edges in each iteration
- After the selection, we remove the vertex, and all its adjacent edges
Ex :

- Unfortunately, when input graph has n vertices, this new algorithm can only guarantee a cover at most $O(\log n)$ times the optimal (instead of at most 2)
- A worst-case scenario looks like :

Optimal : 6 nodes (red) New algo : 13 nodes (blue)

Example : Max-Cut

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, we want to partition V into disjoint sets $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ such that \# edges between them (with exactly one end-point in each set) is maximized
- $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ is usually called a cut
- target: find a cut with maximum \#edges
- This problem is NP-hard

Example : Max-Cut

Fact :

If G has m edges, \#edges in any cut is at most m

- Thus, if we can find a cut which has at least $m / 2$ edges, this will be at least half of optimal
- How to find this cut?
- Let us consider the following algorithm:

1. $\mathrm{V}_{1}=\mathrm{V}_{2}=$ empty set ;
2. Label the vertices by $x_{1}, x_{2}, \ldots, x_{n}$
3. For $(k=1$ to $n)\{$
/* Fix location of $x_{k}{ }^{* /}$
Fix x_{k} to the set such that more in-between edges (with those already fixed vertices $x_{1}, x_{2}, \ldots, x_{k-1}$) are obtained; \}
4. return the cut $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$;

Example Run

original G

Fix vertex a
(a) $\begin{array}{r}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \\ \\ \\ \\ \end{array}$

Example Run

original G

Fix vertex b

Example Run

Fix vertex c

Example Run

original G

Fix vertex d

Example Run

original G

Fix vertex e

Example Run

original G

Fix vertex f

Example Run

original G

Fix vertex 9

Example Run

original G

Fix vertex h

Example Run

Fix vertex i

\#in-between edges = 9

Example : Max-Cut

- How far is our cut from the optimal ?
- At most 2 times (why??)
- When a vertex v is fixed, we will add some edges into the cut, and discard some edges (u, v) if u is placed in the same set as v
- But when each vertex is fixed :
\#edges added \geq \#edges discarded
\rightarrow total \#edges added $\geq m / 2$

