CS 5319
 Advanced Discrete Structure

Lecture 14:
Introduction to Group Theory IV

Outline

- Introduction

- Groups and Subgroups
- Generators
- Cosets (and Lagrange's Theorem)
- Permutation Groun (and Burnside's Theorem)
- Group Codes

Codes

- A sequence of symbols is called a word
- The coding problem is to represent distinct message using distinct words
- In particular, in digital communication, the words are formed by 0 or 1
- A code is the set of words used for the distinct messages in a certain scheme
- These words are called codewords

Codes

- There are a few reasons for designing codes

1. To save storage or communication time Ex: Huffman, run-length, arithmetic, ...
2. To detect error in transmission

Ex : Repetition, parity, checksum, ...
3. To correct error in transmission

Ex : Golay, Reed-Solomon, Reed-Muller, group, convolution, ...

Block Codes

- A block code is a code whose codewords all have the same length
- One reason for having block codes is for error detection or error correction
- Let $A=$ the set of all length- n binary words

$$
\oplus=\text { binary XOR operation on } A
$$

Ex: $10111 \oplus 00101=10010$

- Note that (A, \oplus) is a group

Block Codes

- For any x in A, we define the weight of x, denoted by $w(x)$, to be \# of 1 's in x
$\operatorname{Ex}: w(10111)=4, w(00101)=2$
- The distance between any x and y in A, denoted by $d(x, y)$, is the weight of $x \oplus y$
- That is, $d(x, y)=w(x \oplus y)$
$\Rightarrow d(x, y)=d(y, x)$
- Also, $d(x, y)=\#$ bits that x and y are different

Block Codes

Lemma 1 (Triangle Inequality) :

For any x, y, and z in A,

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

Proof :
First, $w(u \oplus v) \leq w(u)+w(v) \quad$ [why?]
$\rightarrow w(x \oplus z)=w(x \oplus y \oplus y \oplus z)$

$$
\leq w(x \oplus y)+w(y \oplus z)
$$

Thus, $d(x, z) \leq d(x, y)+d(y, z)$

Block Codes

- We now define the distance of a code, which is closely related to its error-correction power

Definition :

The distance of a code G is the minimum distance between any two words in G

- Now, suppose a word y is received from sender
- If y is in G, we assume y is the word sent
- If y is not in G, we assume the word x in G, with $d(x, y)$ minimized, is the word sent

Block Codes

- The previous decoding method is called the minimum-distance decoding criterion

Theorem 1:
A code of distance $2 t+1$ can correct t or fewer transmission errors if we use minimum-distance decoding criterion

Block Codes

Proof : Suppose there are at most t errors
Let $x=$ codeword sent, $y=$ word received
$z=$ codeword not equal to x
Then we have: $\quad d(x, y) \leq t$
Also, we have: $\quad d(x, z) \geq 2 t+1$
so that $\quad d(x, y)+d(y, z) \geq 2 t+1$
\rightarrow For any $z \neq x, d(y, z) \geq t+1$
$\rightarrow y$ is decoded correctly without ambiguity

Group Codes

- We now study a class of block codes called group codes
- A subset G of A is called a group code if (G, \oplus) is a subgroup of (A, \oplus)
- $A=$ set of all length $-n$ binary words

Ex :
$\{0000,0011,1101,1110\}$ is a group code $\{00000,01110\}$ is also a group code

Group Codes

- The distance of a group code can be easily determined based on the following theorem

Theorem 2 :
Let G be a group code, and x be the minimumweight non-zero codeword in G. Then, distance of G is equal to $w(x)$

Group Codes

Proof :

First, since $\mathbf{0}$ (the word with all 0 's) is in G,

$$
w(x)=d(x, \mathbf{0}) \geq \text { distance of } G
$$

However, for any y and z in G,

$$
d(y, z)=w(y \oplus z) \geq w(x)
$$

\rightarrow distance of $G=\min _{y, z} d(y, z) \geq w(x)$
Thus, distance of $G=w(x)$

Group Codes

- For group codes, if we use minimum-distance decoding criterion, there is an easy way to find the codeword corresponding to the received word
- Firstly, suppose word y is received
- Corresponding codeword x in G should be one that minimizes $w(x \oplus y)$
- Equivalently, if e is the word with smallest weight in the coset $G \oplus y$
$\Rightarrow e=y \oplus x$, or $x=y \oplus e$

Group Codes

- Now, suppose that
- for each coset C of G, we remember its smallest weight word e_{C}
- For each y, we remember which coset $C(y)$ that y belongs to
\rightarrow Then upon receiving y, we can decode it back to the transmitted codeword x by :

$$
x=y \oplus e_{C(y)}
$$

Ex : Suppose we use the group code $G=\{00000,00111,11010,11101\}$ whose distance $=3$ (thus can correct 1 error)

- Cosets of G :
\(\left.\begin{array}{l}G \oplus 00000=\{00000,00111,11010,11101\}

G \oplus 00001=\{00001,00110,11011,11100\}

G \oplus 00010=\{00010,00101,11000,11111\}

G \oplus 00100=\{00100,00011,11110,11001\}

G \oplus 01000=\{01000,01111,10010,10101\}

G \oplus 10000=\{10000,10111,01010,01101\}

G \oplus 10001=\{10001,10110,01011,01100\}

G \oplus 10100=\{10100,10011,01110,01001\}\end{array}\right\}\)| Decoding |
| :--- |
| is unique |

