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Outline
•Introduction
•Groups and Subgroups
•Generators
•Cosets (and Lagrange’s Theorem)
•Permutation Group (and Burnside’s Theorem)
•Group Codes



Permutation Group
•Let S be a set with finite number of elements
•A one-to-one function from S onto itself is

called a permutation
•We use the notation :

to denote the permutation of the set { a, b, c, d }
that maps a to b, b to d, c to c, and d to a

•Note: Elements in upper row can be in arbitrary order

abcd
bdca



Permutation Group
•Suppose the set S has n elements
•Let A denote the n! permutations of S
•We define the binary operation ° on A to be

the composition of two functions
Ex :

abcd
bdca

°
abcd
acbd

=
abcd
bcda



Permutation Group
Lemma 1:

The binary operation ° on A is closed

Proof :
Let 1 and 2 be two permutations on S.
To show 1 ° 2 is in A, we only need to show no
two elements are mapped to the same element by
1 ° 2 (why?)



Permutation Group
Proof (cont) :

Suppose 2 maps a to b, and 1 maps b to c
 1 ° 2 maps a to c
Now for any x a, 2 will map x to some y
distinct from b (since 2 is a permutation)
Similarly, 1 will map y to some z distinct from c
(since 1 is a permutation)
 1 ° 2 will not map x to c



Permutation Group
Lemma 2:

The binary operation ° on A is associative

Proof :
Let 1 , 2 , and 3 be three permutations on S.
Our target is to show

( 1 ° 2 ) ° 3 = 1 ° ( 2 ° 3 )



Permutation Group
Proof (cont) :

Suppose that 3 maps a to b, 2 maps b to c,
and 1 maps c to d

We have ( 1 ° 2 ) maps b to d
 ( 1 ° 2 ) ° 3 maps a to d

On the other hand, ( 2 ° 3 ) maps a to c
 1 ° ( 2 ° 3 ) maps a to d

Thus ° is an associative operation



Permutation Group
Ex :

abcd
adbc

1 =
abcd
bacd

3 =
abcd
bdac

2 =

Then

(1° 2) ° 3 =
abcd
dabc

abcd
bdac

° =
abcd
acdb

1° (2° 3) =
abcd
adbc

abcd
adbc

° =
abcd
acdb



Permutation Group
Theorem 1:

(A, ° ) is a group

Proof :
1. ° is both closed and associative
2. There exists an identity permutation, which

maps each element into itself
3. The inverse of is one that maps (a) into a



Permutation Group

Definition : A subgroup (G, ° ) of (A, ° ) is called
a permutation subgroup

Ex :

G =
abcd
bacd 

abcd
abdc

abcd
abcd

abcd
badc 



Permutation Group
Definition :

A binary relation induced by a permutation
group (G, ° ) is a relation R such that

an element a is related to b
 some permutation in G maps a to b

Ex : In the previous G,
a is related to b, b is related to a
c is related to d, d is related to c



Permutation Group
Theorem 2:

A binary relation R induced by a permutation
group (G, ° ) is an equivalence relation

Proof :
1. a R a (due to identity)
2. a R b b R a (due to inverse)
3. a R b and b R c a R c (due to associative)



Permutation Group
Corollary :

A binary relation R induced by a permutation
group (G, ° ) of S partitions the elements in S

Ex :
The binary relation on the previous G partitions
the elements { a, b, c, d } into two equivalence
classes : { a, b } and { c, d }



Burnside’s Theorem
•Let () denote the number of elements that are

invariant under the permutation 
Theorem 3 (Burnside) :

Let R be the equivalence relation induced by a
permutation group (G, ° ) of S.
Then # classes that R partitions S into is :

()1
| G | G



Burnside’s Theorem

Ex :

G =
abcd
bacd 

abcd
abdc

abcd
abcd

abcd
badc 

•Total number of invariant elements
= 4 + 2 + 2 + 0 = 8

•# of equivalence classes = 8 / | G | = 2



Burnside’s Theorem

Proof :
Let (s) = # permutations that s is invariant
Then we have :

() =
G

(s)
sS

Let a and b be two elements that are in the same
equivalence classes
 Exactly (a) permutations maps a to b (why?)



Burnside’s Theorem
Proof (cont) : The reason is that :

Suppose J = { 1 , 2 , 3 , 4 , … } are all (a)
permutations that a is invariant, and is some
permutation that maps a to b (why exits?)
Then K = { ° 1 , ° 2 , ° 3 , ° 4 , … }
contains (a) permutations that maps a to b
Also, for any ’that maps a to b
–1 ° ’is in J, so that ’= ° –1 ° ’is in K
 Exactly (a) permutations maps a to b



Burnside’s Theorem
Proof (cont) :

Now, let L = { a, b, c, d, …, h } be the elements
in the same class as a
Because each permutation in G maps a to some
element in L  | L | (a) = | G |
Then we have :

| G | / | L | = (a) = (b) = … = (h)
or

(a) + (b) + (c) + … + (h) = | G |



Burnside’s Theorem
Proof (cont) :

Thus, for any equivalence class,
sum of (s) for all s in that class = | G |

Immediately, we have :

# equivalence class = (s) / | G |
sS



Burnside’s Theorem
Ex : Suppose an equilateral triangle has each of

its vertices colored by one of the 5 colors
We consider two colorings to be equivalent
if after a rotation, they become the same
For instance, first 2 colorings are equivalent,
but the third coloring is different from them



Burnside’s Theorem
Q : How many distinct colorings are there ?
A : Let S be the set of all 53 colorings

Let (G, ° ) be permutation group such that
each permutation in G correspond to a
possible mapping of a coloring to another
due to a series of rotations
 G has 3 elements :

Identity, Rotate by 120°, Rotate by 240°



Burnside’s Theorem
Answer (cont) :

To find out the number of distinct colorings, it is
the same as to find out how many equivalence
classes that will be obtained by the relation
induced by (G, ° )
 Since each class contains a particular set

of equivalent colorings
By Burnside, the number of classes is :

(53 + 5 + 5) / 3 = 45



Burnside’s Theorem
Ex : Suppose a square has each of its vertices

colored by one of the 7 colors
We consider two colorings to be equivalent
if after a rotation, they become the same
How many distinct colorings ?



Burnside’s Theorem
Answer :

Let (G, ° ) be a permutation group, such that G
contains all the possible permutations obtained
by a series of rotations
 G has four elements :
Rotate by 0°, by 90°, by 180°, and by 270°
 By Burnside, the number of classes is :

(74 + 7 + 72 + 7) / 4 = 616



Burnside’s Theorem

Ex : Let p = prime.
a = a number coprime to p

Suppose a regular p-gon has each of its
vertices colored by one of the a colors
We consider two colorings to be equivalent
if after a rotation, they become the same

Q: How many distinct colorings ?



Burnside’s Theorem
A : Let G be the p different rotations.
 By Burnside, the number of classes is :

(ap + a + a + … + a) / p
= (ap + (p –1) a) / p

This implies that ap–a must be a multiple of p
 apa (mod p) or ap–1 1 (mod p)
 A new proof of Fermat’s Little Theorem



Burnside’s Theorem
Ex : Let S be the set of all 105 five-digit number.

Two numbers in S are considered equivalent
if one can read the other upside down
For example,

99861 and 19866 are equivalent
but 99861 and 66891 are not

Q: How many distinct numbers are there ?



Burnside’s Theorem
Answer :

Let (G, ° ) be the permutation group such that G
contains all the possible permutations obtained
by a sequence of upside-down rotations
 G has 2 elements : identity, “upside-down”

where “upside-down”maps :
(i) a number to itself when it is not readable

upside-down (e.g., 13567 to 13567)
(ii) otherwise, a number to its equivalent



Burnside’s Theorem
Answer (cont) :

By Burnside, the # of equivalence classes is :
( 105 + (105–55) + 3 52) / 2 = 98475

•Here, 105–55 counts those numbers that
contain at least one 2, 3, 4, 5, or 7

•Here, 3 52 counts those numbers formed by
only 0, 1, 6, 8, and 9 which are invariant
upside-down (must have 0/1/8 at the center)


