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Generators



Generators
•Let (A, ) be an algebraic system where  is

a closed binary operation
•Let B = { a1 , a2 , … } be a subset of A
•Let B1 denote the subset of A which contains

(1) all elements of B ; and
(2) the element ajak for all aj , ak in B

•B1 is called the set generated directly by B



Generators
•Similarly, we let

B2 = the set generated directly by B1

Bi+1 = the set generated directly by Bi

•Let B* denote the union of B1 , B2 , …
 (B*,) := the subsystem generated by B
 any element in B* is said to be generated by B

Note :  is a closed operation on B* (why?)



Generators
Ex : Consider the algebraic system (N, +).

Let B = { 3, 5 }
 B1 = { 3, 5, 6, 8, 10 }

B2 = { 3, 5, 6, 8, 9, 10, 11, 12,
13, 14, 15, 16, 18, 20 }

…
B* = N –{ 1, 2, 4, 7 }



Generators
•If B* = A, B is called a generating set of (A, )

Ex : { 1, 3 } is a generating set of (N, +)

•When (A, ) is a group, and (B*, ) is finite,
then (B*, ) is a subgroup of (A , ) [why?]
Ex : A = all possible angular rotation

= combination of two angular rotations
B = { 120}, B* = { 0, 120, 240}
 (B*, ) is a subgroup



Generators
•When a group has a generating set of one

element, the group is called a cyclic group

Ex : ( Zn , n ) is a cyclic group,
with generating set = { 1 }

Ex : ( Z7 \{0} , n ) is a cyclic group,
with generating set = { 3 }

Ex : ( Z, + ) is not a cyclic group
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Generators
Lemma 1 :

All cyclic groups are commutative.

Proof : Let (A, ) = a cyclic group
{ a } = generating set of (A, )

 each element in A is equal to aj for some j
Since is associative, we have

ajak = akaj

 All cyclic groups must be commutative



Generators
•There is an interesting problem that is related to

generator called addition chain problem

•Given a positive integer n , a sequence
a1, a2 , …, ar

is called an addition chain for n if
a1 = 1, ar = n ,

and each aj is the sum of two previous terms
(possibly equal)



Generators

Ex : Some addition chains for 9 are show below.

(a) 1, 2, 3, 4, 5, 6, 7, 8, 9
(b) 1, 2, 4, 8, 9
(c) 1, 2, 3, 4, 5, 9
(d) 1, 2, 3, 6, 9



Generators
•Given an integer n, the addition chain problem

is to find the shortest addition chain for n

•This problem is extremely interesting, and was
studied rather extensively

•We do not know how to find the shortest
chain, but there are two simple ways to find
relatively short chain



Generators
•Method 1 (Binary Method) :

We generate the chain for n in reverse order,
based on recursion, stopping when n = 1:

If n = even, recursively generate n / 2
If n = odd, recursively generate n –1

Ex : Addition Chain for 45
1, 2, 4, 5, 10, 11, 22, 44, 45 (9 steps)



Generators
•Method 2 (Factor Method) :

If n can be factored into p q , we can find the
chains for p and q first, and use these chains to
construct a chain for n

Suppose chain for p : 1, p1 , p2 , …, pr

chain for q : 1, q1 , q2 , …, qs

 q1 , q2 , …, qs , p1qs ,, p2 qs , …, pr qs
is a chain for n



Generators
•Ex : Addition Chain for 5 : 1, 2, 4, 5

Addition Chain for 9 : 1, 2, 4, 8, 9
 Addition Chain for 45 :

1, 2, 4, 8, 9, 18, 36, 45 (8 steps)

•It is known that the length of the shortest
addition chain for n is bounded by :
[ log2 n + log2(n) –2.13, log2 n + (n) –1 ]
where (n) = #1’s in binary representation of n



Cosets and Lagrange’s Theorem



Cosets
•Let (A, ) be an algebraic system where  is a

binary operation (not necessarily closed)
•Let a be an element in A, and H be a subset of A

Definition (Cosets) :
a H := { a  x | x  H } is called the

left coset of H with respect to a
H a := { x a | x  H } is called the

right coset of H with respect to a



Cosets

Ex :
Suppose an initial rotation of either 0, 120, or
240is followed by a subsequent rotation of 60.
What are the possible total angular rotations?
 This is equal to the right coset of

{ 0, 120, 240} with respect to 60



Cosets

•Suppose (A, ) is a group, and (H, ) is a
subgroup of (A, )

Theorem 1 :

Let a H and b H be two cosets of H.
Then it follows that either

(1) a H and b H are disjoint, or
(2) they are identical



Cosets
Proof : Suppose they are not disjoint
 there exists a common element, say f
 there exist h1 and h2 in H such that

f = a h1 = b h2

so that a = b h2h1
–1

Now, for any x in a H , x must be in b H ,
since x = a h3 = b h3 h2h1

–1

= b h4 for some h3 and h4 in H



Cosets
Proof (cont) :

Thus, we have
a H  b H

Similarly, we have
b H  a H

 the two cosets are identical



Lagrange’s Theorem

•Suppose (A, ) is a finite group, and (H, ) is a
subgroup of (A, )
Fact : Any coset of H has the same size as H

Theorem 2 (Lagrange) :

The order of any subgroup of a finite group
divides the order of the finite group



Lagrange’s Theorem

Proof : Suppose (A, ) is a finite group,
and (H, ) is a subgroup of (A, )

 Identity element e must be in H
 For each element a in A,

a is in the left coset a H
 Let r be # of distinct left cosets of H

Since each element is in some coset of H,
and each coset has equal size r |H| = |A|



Lagrange’s Theorem

Corollary :

Suppose the order of a group G is prime.
Then we have :
1. There is no non-trivial subgroup of G
2. Any set with one element (except identity)

is a generating set of G
3. G is a cyclic group



Lagrange’s Theorem

Ex : ( Z7 , 7 ) is a group of order 7.

1. The only subgroups of ( Z7 , 7 ) are :
( { 0 } , 7 ) and ( Z7 , 7 )

2. Any element (except 0) is a generator.
For instance, from { 2 }, we can generate

2, 4, 6, 1, 3, 5, 0
3. From (2), we see that ( Z7 , 7 ) is cyclic


