CS 5319
 Advanced Discrete Structure

Lecture 12:
Introduction to Group Theory II

Outline

- Introduction
- Grouns and Subgroups
- Generators
- Cosets (and Lagrange's Theorem)
- Permutation Group (and Burnside's Theorem)
- Group Codes

Generators

Generators

- Let (A, \star) be an algebraic system where \star is a closed binary operation
- Let $B=\left\{a_{1}, a_{2}, \ldots\right\}$ be a subset of A
- Let B_{1} denote the subset of A which contains
(1) all elements of B; and
(2) the element $a_{j} \star a_{k}$ for all a_{j}, a_{k} in B
- B_{1} is called the set generated directly by B

Generators

- Similarly, we let

$$
\begin{aligned}
& B_{2}=\text { the set generated directly by } B_{1} \\
& B_{i+1}=\text { the set generated directly by } B_{i}
\end{aligned}
$$

- Let B^{*} denote the union of B_{1}, B_{2}, \ldots
$\rightarrow\left(B^{*}, \star\right):=$ the subsystem generated by B
\rightarrow any element in B^{*} is said to be generated by B
Note : \star is a closed operation on B^{*} (why?)

Generators

Ex : Consider the algebraic system $(N,+)$.

$$
\begin{aligned}
\text { Let } & B=\{3,5\} \\
\Rightarrow \quad & B_{1}=\{3,5,6,8,10\} \\
& B_{2}=\{3,5,6,8,9,10,11,12, \\
& =13,14,15,16,18,20\} \\
\cdots & \\
& B^{*}=
\end{aligned}
$$

Generators

- If $B^{*}=A, B$ is called a generating set of (A, \star) Ex: $\{1,3\}$ is a generating set of $(N,+)$
- When (A, \star) is a group, and $\left(B^{*}, \star\right)$ is finite, then $\left(B^{*}, \star\right)$ is a subgroup of (A, \star) [why?]
Ex : $A=$ all possible angular rotation $\star=$ combination of two angular rotations
$B=\left\{120^{\circ}\right\}, B^{*}=\left\{0^{\circ}, 120^{\circ}, 240^{\circ}\right\}$
$\rightarrow\left(B^{*}, \star\right)$ is a subgroup

Generators

- When a group has a generating set of one element, the group is called a cyclic group

Ex: $\left(Z_{n}, \oplus_{n}\right)$ is a cyclic group, with generating set $=\{1\}$

Ex: $\left(Z_{7} \backslash\{0\}, \otimes_{n}\right)$ is a cyclic group, with generating set $=\{3\}$

Ex: ($Z,+$) is notacyelic group

Generators

Lemma 1 :

All cyclic groups are commutative.
Proof : Let $(A, \star)=$ a cyclic group
$\{a\}=$ generating set of (A, \star)
\rightarrow each element in A is equal to a^{j} for some j
Since \star is associative, we have

$$
a^{j} \star a^{k}=a^{k} \star a^{j}
$$

\rightarrow All cyclic groups must be commutative

Generators

- There is an interesting problem that is related to generator called addition chain problem
- Given a positive integer n, a sequence

$$
a_{1}, a_{2}, \ldots, a_{r}
$$

is called an addition chain for n if

$$
a_{1}=1, a_{r}=n,
$$

and each a_{j} is the sum of two previous terms (possibly equal)

Generators

Ex : Some addition chains for 9 are show below.
(a) $1,2,3,4,5,6,7,8,9$
(b) $1,2,4,8,9$
(c) $1,2,3,4,5,9$
(d) $1,2,3,6,9$

Generators

- Given an integer n, the addition chain problem is to find the shortest addition chain for n
- This problem is extremely interesting, and was studied rather extensively
- We do not know how to find the shortest chain, but there are two simple ways to find relatively short chain

Generators

- Method 1 (Binary Method) :

We generate the chain for n in reverse order, based on recursion, stopping when $n=1$:

If $n=$ even, recursively generate $n / 2$
If $n=$ odd, recursively generate $n-1$
Ex: Addition Chain for 45

$$
1,2,4,5,10,11,22,44,45 \text { (9 steps) }
$$

Generators

- Method 2 (Factor Method) :

If n can be factored into $p \times q$, we can find the chains for p and q first, and use these chains to construct a chain for n

Suppose chain for $p: 1, p_{1}, p_{2}, \ldots, p_{r}$
chain for $q: 1, q_{1}, q_{2}, \ldots, q_{s}$
$\rightarrow q_{1}, q_{2}, \ldots, q_{s}, p_{1} q_{s}, p_{2} q_{s}, \ldots, p_{r} q_{s}$
is a chain for n

Generators

- Ex: Addition Chain for 5 : $1,2,4,5$

Addition Chain for $9: 1,2,4,8,9$
\rightarrow Addition Chain for 45 :

$$
1,2,4,8,9,18,36,45 \text { (8 steps) }
$$

- It is known that the length of the shortest addition chain for n is bounded by :
$\left[\log _{2} n+\log _{2} v(n)-2.13, \log _{2} n+v(n)-1\right]$
where $v(n)=\# 1$'s in binary representation of n

Cosets and Lagrange's Theorem

Cosets

- Let (A, \star) be an algebraic system where \star is a binary operation (not necessarily closed)
- Let a be an element in A, and H be a subset of A

Definition (Cosets) :
$a \star H:=\{a \star x \mid x \in H\}$ is called the left coset of H with respect to a
$H \star a:=\{x \star a \mid x \in H\}$ is called the right coset of H with respect to a

Cosets

Ex :
Suppose an initial rotation of either $0^{\circ}, 120^{\circ}$, or 240° is followed by a subsequent rotation of 60°. What are the possible total angular rotations?
\rightarrow This is equal to the right coset of $\left\{0^{\circ}, 120^{\circ}, 240^{\circ}\right\}$ with respect to 60°

Cosets

- Suppose (A, \star) is a group, and (H, \star) is a subgroup of (A, \star)

Theorem 1:
Let $a \star H$ and $b \star H$ be two cosets of H. Then it follows that either
(1) $a \star H$ and $b \star H$ are disjoint, or
(2) they are identical

Cosets

Proof: Suppose they are not disjoint
\rightarrow there exists a common element, say f
\rightarrow there exist h_{1} and h_{2} in H such that

$$
\begin{array}{r}
f=a \star h_{1}=b \star h_{2} \\
\text { so that } a=b \star h_{2} \star h_{1}^{-1}
\end{array}
$$

Now, for any x in $a \star H, x$ must be in $b \star H$, since $x=a \star h_{3}=b \star h_{3} \star h_{2} \star h_{1}^{-1}$

$$
=b \star h_{4} \quad \text { for some } h_{3} \text { and } h_{4} \text { in } H
$$

Cosets

Proof (cont) :

Thus, we have

$$
a \star H \subseteq b \star H
$$

Similarly, we have

$$
b \star H \subseteq a \star H
$$

\rightarrow the two cosets are identical

Lagrange's Theorem

- Suppose (A, \star) is a finite group, and (H, \star) is a subgroup of (A, \star)
Fact : Any coset of H has the same size as H
Theorem 2 (Lagrange) :
The order of any subgroup of a finite group divides the order of the finite group

Lagrange's Theorem

Proof : Suppose (A, \star) is a finite group, and (H, \star) is a subgroup of (A, \star)
\rightarrow Identity element e must be in H
\rightarrow For each element a in A, a is in the left coset $a \star H$
\rightarrow Let r be \# of distinct left cosets of H Since each element is in some coset of H, and each coset has equal size $\rightarrow r|H|=|A|$

Lagrange's Theorem

Corollary :
Suppose the order of a group G is prime.
Then we have :

1. There is no non-trivial subgroup of G
2. Any set with one element (except identity) is a generating set of G
3. G is a cyclic group

Lagrange's Theorem

Ex: $\left(Z_{7}, \oplus_{7}\right)$ is a group of order 7.

1. The only subgroups of $\left(Z_{7}, \oplus_{7}\right)$ are :

$$
\left(\{0\}, \oplus_{7}\right) \text { and }\left(Z_{7}, \oplus_{7}\right)
$$

2. Any element (except 0) is a generator.

For instance, from \{ 2 \}, we can generate

$$
2,4,6,1,3,5,0
$$

3. From (2), we see that $\left(Z_{7}, \oplus_{7}\right)$ is cyclic
