CS 5319 Advanced Discrete Structure

Lecture 12: Introduction to Group Theory II

Outline

- Introduction
- Groups and Subgroups
- Generators
- Cosets (and Lagrange's Theorem)
- Permutation Group (and Burnside's Theorem)
- Group Codes

- Let (A, \star) be an algebraic system where \star is a closed binary operation
- Let $B = \{ a_1, a_2, ... \}$ be a subset of A
- Let B₁ denote the subset of A which contains
 (1) all elements of B; and
 (2) the element a₁ ★ ak for all ai, ak in B
- B_1 is called the set generated directly by B

- Similarly, we let
 - B_2 = the set generated directly by B_1

 B_{i+1} = the set generated directly by B_i

Let B* denote the union of B₁, B₂, ...
→ (B*,★) := the subsystem generated by B
→ any element in B* is said to be generated by B

Note : \star is a closed operation on B^* (why?)

Ex : Consider the algebraic system (N, +).

Let
$$B = \{ 3, 5 \}$$

 $\Rightarrow B_1 = \{ 3, 5, 6, 8, 10 \}$
 $B_2 = \{ 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20 \}$

$$B^* = N - \{ 1, 2, 4, 7 \}$$

- If $B^* = A$, *B* is called a generating set of (A, \star) Ex : { 1, 3 } is a generating set of (N, +)
- When (A, *) is a group, and (B*, *) is finite, then (B*, *) is a subgroup of (A, *) [why?]
 Ex : A = all possible angular rotation
 - \star = combination of two angular rotations
 - $B = \{ 120^{\circ} \}, B^* = \{ 0^{\circ}, 120^{\circ}, 240^{\circ} \}$

 \rightarrow (B^* , \star) is a subgroup

- When a group has a generating set of one element, the group is called a cyclic group
 - Ex : (Z_n, \bigoplus_n) is a cyclic group, with generating set = $\{1\}$
 - Ex: $(Z_7 \setminus \{0\}, \bigotimes_n)$ is a cyclic group, with generating set = $\{3\}$

Ex: (Z, +) is not a cyclic group

Lemma 1 :

All cyclic groups are commutative.

Proof : Let $(A, \star) = a$ cyclic group $\{a\} = \text{generating set of } (A, \star)$ \Rightarrow each element in A is equal to a^j for some j Since \star is associative, we have $a^j \star a^k = a^k \star a^j$

→ All cyclic groups must be commutative

- There is an interesting problem that is related to generator called addition chain problem
- Given a positive integer n, a sequence

 $a_1, a_2, ..., a_r$

is called an addition chain for n if

$$a_1 = 1, \ a_r = n$$
,

and each a_j is the sum of two previous terms (possibly equal)

Ex : Some addition chains for 9 are show below.

- Given an integer *n*, the addition chain problem is to find the shortest addition chain for *n*
- This problem is extremely interesting, and was studied rather extensively
 - We do not know how to find the shortest chain, but there are two simple ways to find relatively short chain

• Method 1 (Binary Method) :

We generate the chain for *n* in reverse order, based on recursion, stopping when n = 1:

- If n = even, recursively generate n / 2
- If n = odd, recursively generate n 1
- Ex : Addition Chain for 45 1, 2, 4, 5, 10, 11, 22, 44, 45 (9 steps)

• Method 2 (Factor Method) :

If *n* can be factored into $p \times q$, we can find the chains for p and q first, and use these chains to construct a chain for *n*

Suppose chain for $p: 1, p_1, p_2, ..., p_r$ chain for $q: 1, q_1, q_2, ..., q_s$

 $\rightarrow q_1, q_2, ..., q_s, p_1q_s, p_2q_s, ..., p_rq_s$ is a chain for *n*

Ex : Addition Chain for 5 : 1, 2, 4, 5 Addition Chain for 9 : 1, 2, 4, 8, 9
→ Addition Chain for 45 :

1, 2, 4, 8, 9, 18, 36, 45 (8 steps)

• It is known that the length of the shortest addition chain for *n* is bounded by :

 $[\log_2 n + \log_2 v(n) - 2.13, \log_2 n + v(n) - 1]$

where v(n) = #1's in binary representation of *n*

Cosets and Lagrange's Theorem

- Let (A, \star) be an algebraic system where \star is a binary operation (not necessarily closed)
- Let *a* be an element in *A*, and *H* be a subset of *A*

Definition (Cosets) : $a \star H := \{ a \star x / x \in H \}$ is called the left coset of H with respect to a $H \star a := \{ x \star a / x \in H \}$ is called the right coset of H with respect to a

Ex:

Suppose an initial rotation of either 0°, 120°, or 240° is followed by a subsequent rotation of 60°.
What are the possible total angular rotations?
→ This is equal to the right coset of { 0°, 120°, 240° } with respect to 60°

• Suppose (A, \star) is a group, and (H, \star) is a subgroup of (A, \star)

Theorem 1 :

Let a * H and b * H be two cosets of H.
Then it follows that either

(1) a * H and b * H are disjoint, or
(2) they are identical

Proof : Suppose they are not disjoint

→ there exists a common element, say *f*→ there exist *h*₁ and *h*₂ in *H* such that

$$f = a \star h_1 = b \star h_2$$

so that $a = b \star h_2 \star h_1^{-1}$

Now, for any x in $a \star H$, x must be in $b \star H$, since $x = a \star h_3 = b \star h_3 \star h_2 \star h_1^{-1}$ $= b \star h_4$ for some h_3 and h_4 in H

Proof (cont) : Thus, we have $a \star H \subseteq b \star H$ Similarly, we have $b \star H \subseteq a \star H$

→ the two cosets are identical

Suppose (A, *) is a finite group, and (H, *) is a subgroup of (A, *)
Fact : Any coset of H has the same size as H

Theorem 2 (Lagrange) :

The order of any subgroup of a finite group divides the order of the finite group

Proof : Suppose (A, \star) is a finite group, and (H, \star) is a subgroup of (A, \star) \rightarrow Identity element *e* must be in *H* \rightarrow For each element *a* in *A*, a is in the left cos t $a \star H$ \rightarrow Let *r* be # of distinct left cosets of *H* Since each element is in some coset of *H*. and each coset has equal size $\rightarrow r |H| = |A|$

Corollary :

Suppose the order of a group *G* is prime. Then we have :

- 1. There is no non-trivial subgroup of G
- 2. Any set with one element (except identity) is a generating set of G
- 3. *G* is a cyclic group

Ex: (Z_7, \oplus_7) is a group of order 7.

- 1. The only subgroups of (Z_7, \oplus_7) are : $(\{0\}, \oplus_7)$ and (Z_7, \oplus_7)
- 2. Any element (except 0) is a generator.For instance, from { 2 }, we can generate 2, 4, 6, 1, 3, 5, 0
- 3. From (2), we see that (Z_7, \oplus_7) is cyclic