CS 5319
 Advanced Discrete Structure

Lecture 10:
Introduction to Number Theory III

Outline

- Divisibility
- Greatest Common Divisor
- Fundamental Theorem of Arithmetic
- Modular Arithmetic
- Euler Phi Function
- RSA Cryptosystem

Reference: Course Notes of MIT 6.042J (Fall 05)
by Prof. Meyer and Prof. Rubinfeld

RSA Cryptosystem

- A cryptosystem allows a sender to encrypt a message M into some form C so that only the intended receiver can decrypt C back to M
- Most cryptosystems are symmetric, where the sender and the receiver have to share a secret key in order to perform the encoding and decoding
- we can encrypt if and only if we can decrypt
- Major problem : How can the receiver and sender agree on the secret key in the first place?

RSA Cryptosystem

- In 1977, Rivest, Shamir, and Adleman announced a scheme which does not need a shared secret key
- This is widely known as the RSA cryptosystem
- Indeed, a similar scheme was invented earlier in 1973 by Ellis and Cocks
- Since these schemes do not need shared secret keys, they are called public key cryptosystems
- The following describes how RSA works

RSA Cryptosystem

Setup. Receiver performs the following :

- Choose two distinct primes p and q. Let $n=p \cdot q$
- Select an integer e coprime to $\varphi(n)$.
- The pair (e, n) is the public key and the receiver tells all the others
- Find the unique d such that $e d \equiv 1(\bmod \varphi(n))$.
- The pair (d, n) is the secret key, and the receiver keeps this hidden

RSA Cryptosystem

Encryption. Sender performs the following :

- Get the public key (e, n) of the receiver
- Given a message M, with $0<M<n$, encrypt M by computing

$$
C=M^{e} \operatorname{rem} n
$$

- Send C to the receiver

RSA Cryptosystem

Decryption. Receiver performs the following :

- Receive C from sender
- Decrypt C by computing

$$
M=C^{d} \text { rem } n
$$

Question : Why does RSA work ??

RSA Cryptosystem

Theorem 9:
Decryption of RSA works.
Proof: When M is coprime to n.
Since $e d \equiv 1(\bmod \varphi(n))$, there is an integer t such that $e d=1+t \varphi(n)$. Thus

$$
\begin{gathered}
C^{d} \equiv M^{e d} \equiv M^{1+t \varphi(n)} \equiv M(\bmod n) \\
M=C^{d} \text { rem } n
\end{gathered}
$$

RSA Cryptosystem

Proof (cont) : When M is not coprime to n.
Suppose M is a multiple of p (but not q). Then

$$
\begin{aligned}
C^{d} & \equiv M^{e d} \equiv 0 \equiv M \\
C^{d} & \equiv M^{e d} \equiv M^{1+t \varphi(n)} \\
& \equiv M\left(M^{q-1}\right)^{t(p-1)} \equiv M
\end{aligned} \quad(\bmod p)
$$

$\Rightarrow C^{d}-M$ is a multiple of both p and q
$\Rightarrow C^{d} \equiv M(\bmod n) \quad[$ why? $]$

RSA Cryptosystem

Ex : Finding Public and Secret Keys

- Suppose receiver chooses primes $p=7$ and $q=11$
- Then $n=77$, with $\varphi(n)=(7-1)(11-1)=60$
- Suppose the receiver choose $e=7$, since 7 is coprime to 60
- The corresponding d becomes 43 , since

$$
43 \times 7=301 \equiv 1(\bmod 60)
$$

\rightarrow Public key $=(7,77) ;$ Secret key $=(43,77)$

RSA Cryptosystem

Ex : Encryption and Decryption

- If sender wants to send $M=4$, she encrypts it as

$$
\begin{aligned}
C & =4^{7} \quad \text { rem } 77 \\
& =16384 \operatorname{rem~77}=60
\end{aligned}
$$

- When receiver receives $C=60$, he decrypts it as

$$
M=60^{43} \text { rem } 77=4
$$

Note: $60^{2} \equiv 58,60^{4} \equiv 53,60^{8} \equiv 37,60^{16} \equiv 60,60^{32} \equiv 58(\bmod 77)$

$$
\begin{aligned}
\Rightarrow 60^{43} & \equiv 60^{32} \times 60^{8} \times 60^{2} \times 60 \\
& \equiv 58 \times 37 \times 58 \times 60 \equiv 4(\bmod 77)
\end{aligned}
$$

Security of RSA

- Security of RSA relies on the assumption below : Given the public key (e, n) and C, it is difficult to compute the message M
\rightarrow This relies on the assumption that given the public key (e, n), it is difficult to compute d
\rightarrow This further relies on the assumption that it is difficult to factor n into p and q
- It is recommended that n is at least 2048 bits long

Security of RSA

- Because RSA is now widely used, many people wants to break RSA
- Some weaknesses in RSA are known. Example :
- If the prime factors of either $p-1$ or $q-1$ are all small, the technique by Pollard (1974) can factor n quickly
- Also true if the prime factors of either $p+1$ or $q+1$ are all small (Williams (1982))

Security of RSA

Theorem 10:
If p and q are 'close', then RSA is insecure.

Proof:

If p and q are 'close', then $(p+q) / 2$ is not much larger than \sqrt{n} (we know that it is at least as big)
Now, suppose $p>q$ and we set

$$
x=(p+q) / 2, \quad y=(p-q) / 2
$$

Security of RSA

Proof (cont) :

Thus $n=p \cdot q$

$$
=x^{2}-y^{2}=(x+y)(x-y)
$$

Hence, if an attacker can express n as a difference of two squares, she can factor n
To do this, the attacker tests the numbers

$$
\lceil\sqrt{n}\rceil,\lceil\sqrt{n}\rceil+1,\lceil\sqrt{n}\rceil+2, \ldots
$$

until finding s such that $s^{2}-n$ is a square number

Security of RSA

Proof (cont) :

The number of tests is equal to

$$
x-\lceil\sqrt{n}\rceil=(p+q) / 2-\lceil\sqrt{n}\rceil
$$

which is small
More precisely, if $p=(1+\varepsilon) \sqrt{n}$, then the number of tests is approximately :

$$
\left[\frac{(1+\varepsilon)+(1+\varepsilon)^{-1}}{2}-1\right) \sqrt{n}=\frac{\varepsilon^{2} \sqrt{n}}{2(1+\varepsilon)}
$$

Security of RSA

Ex: Primes p and q are too close If $n=56759$, then the ceiling of its square root is 239 . By testing $s=239,240, \ldots$ we find that

$$
240^{2}-56759=841=29^{2}
$$

\rightarrow Thus we have

$$
n=56759=240^{2}-29^{2}=269 \times 211
$$

