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Outline
•Divisibility
•Greatest Common Divisor
•Fundamental Theorem of Arithmetic
•Modular Arithmetic
•Euler Phi Function
•RSA Cryptosystem

Reference: Course Notes of MIT 6.042J (Fall 05)
by Prof. Meyer and Prof. Rubinfeld



RSA Cryptosystem
•A cryptosystem allows a sender to encrypt a

message M into some form C so that only the
intended receiver can decrypt C back to M

•Most cryptosystems are symmetric, where the
sender and the receiver have to share a secret key
in order to perform the encoding and decoding
•we can encrypt if and only if we can decrypt

•Major problem : How can the receiver and
sender agree on the secret key in the first place ?



RSA Cryptosystem
•In 1977, Rivest, Shamir, and Adleman announced

a scheme which does not need a shared secret key
•This is widely known as the RSA cryptosystem
•Indeed, a similar scheme was invented earlier

in 1973 by Ellis and Cocks
•Since these schemes do not need shared secret

keys, they are called public key cryptosystems
•The following describes how RSA works



RSA Cryptosystem

Setup. Receiver performs the following :
•Choose two distinct primes p and q. Let n = p · q
•Select an integer e coprime to (n).
•The pair (e, n) is the public key and the

receiver tells all the others
•Find the unique d such that ed 1 (mod (n)).
•The pair (d, n) is the secret key, and the

receiver keeps this hidden



RSA Cryptosystem

Encryption. Sender performs the following :
•Get the public key (e, n) of the receiver
•Given a message M, with 0 < M < n,

encrypt M by computing

C = M e rem n

•Send C to the receiver



RSA Cryptosystem

Decryption. Receiver performs the following :

•Receive C from sender
•Decrypt C by computing

M = C d rem n

Question : Why does RSA work ??



RSA Cryptosystem
Theorem 9:

Decryption of RSA works.

Proof: When M is coprime to n.
Since ed 1 (mod (n)), there is an integer t
such that ed = 1 + t (n) . Thus

C d M ed M 1 + t (n) M (mod n)
 M = C d rem n



RSA Cryptosystem
Proof (cont) : When M is not coprime to n.

Suppose M is a multiple of p (but not q). Then
C d  M ed 0 M (mod p)
C d M ed  M 1 + t (n)

 M (M q–1) t (p–1)  M (mod q)

 C d –M is a multiple of both p and q

 C d M (mod n) [why?]



RSA Cryptosystem
Ex : Finding Public and Secret Keys
•Suppose receiver chooses primes p = 7 and q = 11
•Then n = 77, with (n) = (7 –1)(11 –1) = 60
•Suppose the receiver choose e = 7, since 7 is

coprime to 60
•The corresponding d becomes 43, since

43 7 = 301 1 (mod 60)
 Public key = (7, 77) ; Secret key = (43, 77)



RSA Cryptosystem
Ex : Encryption and Decryption
•If sender wants to send M = 4, she encrypts it as

C = 47 rem 77
= 16384 rem 77 = 60

•When receiver receives C = 60, he decrypts it as
M = 6043 rem 77 = 4

Note: 60258, 60453, 60837, 601660, 603258 (mod 77)
 6043 6032 608 602 60

58 37 58 60  4 (mod 77)



Security of RSA
•Security of RSA relies on the assumption below :

Given the public key (e, n) and C , it is difficult to
compute the message M
 This relies on the assumption that given the

public key (e, n), it is difficult to compute d
 This further relies on the assumption that

it is difficult to factor n into p and q

•It is recommended that n is at least 2048 bits long



Security of RSA
•Because RSA is now widely used, many people

wants to break RSA
•Some weaknesses in RSA are known.

Example :
•If the prime factors of either p –1 or q –1 are

all small, the technique by Pollard (1974) can
factor n quickly

•Also true if the prime factors of either p + 1 or
q + 1 are all small (Williams (1982))



Security of RSA
Theorem 10:

If p and q are ‘close’, then RSA is insecure.

Proof:

n
If p and q are ‘close’, then (p + q) / 2 is not much
larger than (we know that it is at least as big)

Now, suppose p > q and we set
x = (p + q) / 2, y = (p –q) / 2



Security of RSA
Proof (cont) :

Thus n = p · q
= x2 –y2 = (x + y)(x –y)

Hence, if an attacker can express n as a difference
of two squares, she can factor n

n

To do this, the attacker tests the numbers

until finding s such that s2 –n is a square number
 , n + 1, n + 2, …



Security of RSA
Proof (cont) :

n

The number of tests is equal to
x – = (p + q) / 2 –

which is small
  n 

n

More precisely, if p = (1+ ) , then the
number of tests is approximately :

n

(1+ ) + (1+ )–1

–1
2

2

= 2(1+ )
n



Security of RSA
Ex : Primes p and q are too close

If n = 56759 ,
then the ceiling of its square root is 239.
By testing s = 239, 240, …we find that

2402–56759 = 841 = 292

 Thus we have
n = 56759 = 2402 –292 = 269 211


