CS 5319
 Advanced Discrete Structure

Lecture 3:
Generating Functions I

Outline

- Introduction
- Generating Functions for (1) Combinations
(2) Permutations
- Distribution of Objects
- More Applications

Introduction

Introduction

- Suppose we have 3 objects: a, b, c
- There are 3 ways to select 1 object from them
- We may describe this by:

$$
a+b+c
$$

- There are 3 ways to select 2 objects from them - We may describe this by:

$$
a b+b c+c a
$$

Introduction

- There is only one way to select all objects We may describe this by:

- What is so special about these terms ?

Introduction

- Let us consider the polynomial

$$
(1+a x)(1+b x)(1+c x)
$$

- After expansion, we get

$$
1+(a+b+c) x+(a b+b c+c a) x^{2}+a b c x^{3}
$$

- Are the coefficients familiar?

Introduction

- We can interpret the polynomial by

Rules of Sum and Product

- The sum ($1+a x$) means that for object a, the ways of selection include :

```
"not select a" OR "select a"
```

- We may use the term $(1+a)$ instead, but we see that the variable x is useful because it can indicate the case where one object is selected

Introduction

- The product

$$
(1+a x)(1+b x)(1+c x)
$$

means for objects a, b, c
the ways of selection are :
"not select a " or "select a " AND
"not select b " or "select b " AND
"not select c " or "select c "

Introduction

- Consequently :

> Powers of x indicates how many objects are selected

Coefficients of x^{k} indicates the different ways to select k objects

- What is the meaning of the constant term in the polynomial?

Generating Functions

- The above example motivates us to use a polynomial to represent a sequence of terms (or a sequence of numbers)
- Ex: We may represent the sequence of numbers ($1,3,6,10,15, \ldots)$ by

$$
1+3 x+6 x^{2}+10 x^{3}+15 x^{4}+\ldots
$$

Generating Functions

- The roles of x, x^{2}, x^{3}, \ldots are just indicators
- We may as well use another set of indicators
- Ex: We may represent the sequence of numbers $(1,3,6,10, \ldots)$ by

$$
1+3 \cos x+6 \cos 2 x+10 \cos 3 x+\ldots
$$

or by

$$
1+3 x^{1}+6 x^{2}+10 x^{3}+\ldots
$$

We use $x^{\underline{k}}$ to denote the falling function

$$
x(x-1)(x-2) \ldots(x-k+1)
$$

Generating Functions

- However, some indicators are not preferred
- Ex: One may use

$$
1,1+x, 1-x, 1+x^{2}, 1-x^{2}, \ldots
$$

as indicators
Why is it not good?
Let us consider the sequence
$(2,0,0,0,0, \ldots)$ and $(0,1,1,0,0, \ldots)$

Generating Functions

- In general, the most useful set of indicators is

$$
1, x, x^{2}, x^{3}, \ldots
$$

so that a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{r}, \ldots\right)$ is represented by

$$
F(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{r} x^{r}+\ldots
$$

- Such generating functions will be our focus
- Next, we shall see how to apply generating functions to solve combinatorial problems

Generating Functions for Combinations

GF for Combinations

- We have seen that

$$
(1+a x)(1+b x)(1+c x)
$$

is the generating function of the different ways to select objects a, b, c

- Instead of different ways of selecting a certain \# of objects, we may be interested only in number of ways of selecting a certain \# of objects

GF for Combinations

- By setting $a=b=c=1$, we have

$$
(1+x)(1+x)(1+x)=1+3 x+3 x^{2}+x^{3}
$$

- The coefficient of x^{r} is exactly the number of ways to select r objects
- This generating function gives the number of combinations
\rightarrow We call this an enumerator

GF for Combinations

- We can extend the idea to find the number of combinations of n objects, by the enumerator

$$
\begin{aligned}
(1+x)^{n}=1 & +C(n, 1) x+C(n, 2) x^{2}+C(n, 3) x^{3} \\
& +\ldots+C(n, n-1) x^{n-1}+x^{n}
\end{aligned}
$$

- Again, the coefficient of x^{r} is exactly the number of ways to select r objects. Why ?
Reason: Each x^{r} term is obtained by selecting $r x$'s and $n-r$ 1's among the n factors of $(1+x)$

GF for Combinations

- Example Applications :
- Show that

$$
C(n, 0)+C(n, 1)+C(n, 2)+\ldots+C(n, n)=2^{n}
$$

- Show that

$$
C(n, 0)-C(n, 1)+C(n, 2)-\ldots+(-1)^{n} C(n, n)=0
$$

GF for Combinations

- Show that

$$
\begin{aligned}
& C(n, 0)^{2}+C(n, 1)^{2}+C(n, 2)^{2}+\ldots+C(n, n)^{2} \\
= & C(2 n, n)
\end{aligned}
$$

- Method 1: Consider the constant term of

$$
(1+x)^{n}\left(1+x^{-1}\right)^{n}
$$

- Method 2: Use combinatorial arguments, and rewrite $C(n, x)^{2}$ as $C(n, x) C(n, n-x)$

GF for Combinations

- Show that

$$
\begin{aligned}
& C(n, 1)+2 C(n, 2)+3 C(n, 3)+\ldots+n C(n, n) \\
= & n 2^{n-1}
\end{aligned}
$$

- Hint: Differentiation on $(1+x)^{n}$

GF for Combinations

- Find the coefficient of x^{23} in

$$
\left(1+x^{5}+x^{9}\right)^{100}
$$

- Hint: How can we obtain the term x^{23} ?

GF for Combinations

- Show that the coefficient of x^{r} in

$$
(1-4 x)^{-1 / 2}
$$

is $C(2 r, r)$

- In other words, $(1-4 x)^{-1 / 2}$ is the generating function of

$$
C(0,0), C(2,1), C(4,2), C(6,3), \ldots
$$

GF for Combinations

- With the previous result, we can show that

$$
\sum_{r=0}^{t} C(2 r, r) C(2 t-2 r, t-r)=4^{t}
$$

- Hint: Can we obtain the sum on the left side as the coefficient of some function (or the product of some functions)? See Page 19, Method 1

GF for Combinations

- What is the meaning of this?

$$
\left(1+a x+a^{2} x^{2}\right)(1+b x)(1+c x)
$$

This represents the case where object a can be selected twice

- What is the meaning of this ?

$$
(1+a x)\left(1+a^{2} x^{2}\right)(1+b x)(1+c x)
$$

GF for Combinations

- Ex: Suppose we have p kinds of objects, each with two pieces, and q additional kinds of objects, each with one piece

Argue that the number of ways to select r pieces of objects is :

$$
\sum_{i=0}^{\lfloor r / 2\rfloor} C(p, i) C(p+q-i, r-2 i)
$$

GF for Combinations

- What is the meaning of this ?

$$
\left(1+x+x^{2}+x^{3}+\cdots+x^{k}+\cdots\right)^{n}
$$

This represents the case where we select from n objects, and each object has unlimited supply

- What is the coefficient of x^{r} ?

GF for Combinations

- Since

$$
\begin{aligned}
& \left(1+x+x^{2}+x^{3}+\cdots+x^{k}+\cdots\right)^{n} \\
= & (1-x)^{-n} \\
= & 1+C(-n, 1)(-x)+C(-n, 2)(-x)^{2}+\cdots
\end{aligned}
$$

- Thus the coefficient of x^{r} is:

$$
\begin{aligned}
C(-n, r)(-1)^{r} & =(-n) \underline{r}(-1)^{r} / r! \\
=|C(-n, r)| & =C(n+r-1, r)
\end{aligned}
$$

GF for Combinations

- What is the meaning of this?

$$
\left(x^{q}+x^{q+1}+x^{q+2}+\cdots+x^{q+z-1}\right)^{n}
$$

This represents the case where we select from n objects, and each object is chosen with at least q and at most $q+z-1$ copies

- What is the coefficient of x^{r} ?

GF for Combinations

- Since

$$
\begin{aligned}
& \left(x^{q}+x^{q+1}+x^{q+2}+\cdots+x^{q+z-1}\right)^{n} \\
= & \left(x^{q}\left(1+x^{1}+x^{2}+\cdots+x^{z-1}\right)\right)^{n} \\
= & \left(x^{q}\left(1-x^{z}\right) /(1-x)\right)^{n} \\
= & x^{q n}\left(\left(1-x^{z}\right) /(1-x)\right)^{n}
\end{aligned}
$$

\rightarrow The desired coefficient of x^{r} is equal to the coefficient of $x^{r-q n}$ in $\left(\left(1-x^{z}\right) /(1-x)\right)^{n}$

GF for Combinations

- Ex: Suppose we have four persons, each rolling a die once.

How many ways can the total score be 17 ?

- Set $r=17, n=4, q=1, z=6$
- The desired answer is the coefficient of x^{13} in

$$
\left(\left(1-x^{6}\right) /(1-x)\right)^{4}
$$

GF for Combinations

- Since

$$
\begin{aligned}
\left(1-x^{6}\right)^{4}= & 1-4 x^{6}+6 x^{12}-4 x^{18}+x^{24} \\
(1-x)^{-4}= & 1+|C(-4,1)| x+|C(-4,2)| x^{2} \\
& +|C(-4,3)| x^{3}+\ldots
\end{aligned}
$$

\rightarrow The coefficient of x^{13} in $\left(\left(1-x^{6}\right) /(1-x)\right)^{4}$ is equal to :
$|C(-4,13)|-4 \times|C(-4,7)|+6 \times|C(-4,1)|=104$

