# CS 5319 Advanced Discrete Structure

Permutations and Combinations I

## Outline

- Notation
- Rules of Sum and Product
- Permutations
- Combinations
- Distribution of Objects
- \* Stirling's Formula

This Lecture

- Selection and arrangement of objects appear in many places
  - → we often want to compute # of ways to select or arrange the objects
- Ex:
  - 1. How many ways to select 2 people from 5 candidates?
  - 2. How many ways to arrange 5 books on the bookshelf?

 In most textbooks, we use the word combination ⇔ selection

Definition: An r-combination of n objects is an unordered selection of r of these objects

• Ex:  $\{c, d\}$  is a 2-combination of the 5 objects  $\{a, b, c, d, e\}$ 

• In most textbooks, we use the word permutation ⇔ arrangement

Definition: An r-permutation of n objects is an ordered arrangement of r of these objects

• Ex: *cbade* is a 5-permutation of the 5 objects { *a*, *b*, *c*, *d*, *e* }

• Further, we use the following notation:

The notation C(n,r) denotes the number of rcombination of n distinct objects

The notation P(n,r) denotes the number of rpermutation of n distinct objects

• What are the values of C(n,n), C(n,1), C(3,2), and P(3,2)?

Suppose we have

```
5 Roman letters A, B, C, D, E and 3 Greek letters \alpha, \beta, \gamma
```

- How many ways to select two letters, one from each group?
- How many ways to select one letter that is either a Roman or a Greek letter?

• In general, if

one event can occur in *m* ways and another event can occur in *n* ways,

**Rule of Product**: There are  $m \times n$  ways that these two events can occur together

**Rule of Sum**: There are m + n ways that one of these two events can occur

Ex: Suppose there are5 Chinese books, 7 English books, and10 French books

• How many ways to choose 2 books of different languages from them?

• Ans:  $5 \times 7 + 5 \times 10 + 7 \times 10 = 155$ 

#### Ex:

Why are the following formulas correct?

- 1.  $P(n,r) = P(r,r) \times C(n,r)$
- 2.  $P(n,n) = P(n,r) \times P(n-r,n-r)$
- 3. C(n,r) = C(n-1,r-1) + C(n-1,r)

We can show that

$$P(n,r) = n \times (n-1) \times ... \times (n-r+1)$$
$$= n! / (n-r)!$$

Proof: P(n,r) = # ways to get r of n objects in some order.

There are n ways to get the first object, n-1 ways to get the second object, ..., n-r+1 ways to get the last object.

Result follows from rule of product.

Ex: How many ways can *n* people stand to form a ring?



The above are considered to be the same (as relative order is the same)

• Suppose we have *n* objects which are not all distinct, where

```
q_1 objects are of the first kind, q_2 objects are of the second kind,
```

. . .

 $q_t$  objects are of the t th kind.

 $\rightarrow$  # of *n*-permutation of these objects is :

```
\frac{n!}{q_1! \ q_2! \dots q_t!}
```

#### Ex:

Suppose we have 5 dashes and 8 dots

- → 13! / (5!8!) ways to arrange them
- If we can only use 7 symbols from them, how many different arrangements?

Ans: 
$$7! / (5!2!) + 7! / (4!3!) + 7! / (3!4!) + 7! / (2!5!) + 7! / (1!6!) + 7! / 7! = 120$$

```
Ex: How to show that (k!)! is divisible by k!^{(k-1)!}?
```

Consider the permutation of k! objects, where k are of the first kind,
k are of the second kind,

k are of the (k-1)! th kind.

- Suppose we have *n* distinct objects, each with unlimited supply
- The # of ways to arrange *r* objects from them is:

 $n^r$ 

Ex: Consider the numbers between 1 and  $10^{10}$ .

- How many of them contain the digit 1?
- How many of them do not ?

Ans:  $9^{10} - 1$  of them do not, the others do

Ex: Consider all *n*-digit binary strings.

• How many contain even number of 0's?

Ans: Half of them (by symmetry)

Ex: Consider all *n*-digit quaternary strings.

• How many contain even number of 0's?

Ans:  $2^n + (4^n - 2^n) / 2$  (how to get this?)

Recall that

$$P(n,r) = P(r,r) \times C(n,r)$$

Thus we have:

$$C(n,r) = P(n,r) / P(r,r)$$
  
=  $n! / [(n-r)! r!]$ 

Immediately, we also have

$$C(n,r) = C(n,n-r)$$

Ex: Consider a decagon (10-sided) where no three diagonals meet at a point.

• How many line segments are the diagonals divided by their intersections ?



In case of a pentagon, there will be 15 line segments

#### Ex:

Five pirates have discovered a treasure box.

They decide to keep that in a locked room so that all the locks can be opened if and only if 3 or more pirates are present

How can they do so? How many locks needed?
 (Each pirate can possess keys to different locks)

#### Ex:

In how many ways can we select three numbers from 1,2, ..., 300 such that their sum is divisible by 3?

- -When the sum of three numbers is divisible by 3, what special property do they have?
- Ans:  $C(100,3) + C(100,3) + C(100,3) + 100^3$

- Suppose we have *n* distinct kinds of objects, each with unlimited supply
- The # of ways to select r objects from them is:

$$C(n+r-1, r)$$

• How to prove it?

#### Ex:

When three indistinguishable dice are thrown, how many outcomes are there?

• Ans: C(6+3-1,3) = 56

#### Ex:

Out of a number of \$100, \$200, \$500, \$1000 bills, how many ways can six bills be selected?

• Ans: C(4+6-1,6) = 84

• Suppose we have *n* objects which are not all distinct, where

 $q_1$  objects are of the first kind,  $q_2$  objects are of the second kind,

. . .

 $q_t$  objects are of the t th kind.

# of ways to select one or more of these objects from them is:

$$(q_1+1)(q_2+1) \dots (q_t+1) - 1$$

#### Ex:

How many divisors does 1400 have?

#### • Ans:

Since 
$$1400 = 2^3 \times 5^2 \times 7$$
,  
the number of divisors of 1400 is  
 $(3+1)(2+1)(1+1) = 24$ 

#### Ex:

For *n* given weights, what is the greatest number of different amounts that can be made up by the combinations of these weights?

To weigh things with integral weight between 1 and 100, how many weights do we need?

#### Ex:

What is the greatest number of different amounts that can be weighed using *n* weights and a balance?

To weigh things with integral weight between 1 and 100, how many weights do we need?