1. For each \(m \) greater than 1, how many primes are there in the closed interval \([m!+2, m!+m]\)? Explain your answer.

2. Let \(p \) be a prime.
 (a) Suppose \(xy \equiv 0 \pmod{p} \). Show that either \(x \equiv 0 \) or \(y \equiv 0 \) modulo \(p \).
 (b) Show that if \(1 < x < p - 1 \) and \(xy \equiv 1 \pmod{p} \), then \(y \not\equiv x \pmod{p} \).
 (c) Show that \(2 \times 3 \times \cdots \times (p - 2) \equiv 1 \pmod{p} \).
 (d) Conclude that Wilson’s theorem is true. That is, \((p - 1)! \equiv -1 \pmod{p}\).

3. Prove that if \(p \) is a prime congruent to 1 modulo 4, then \(\left(\frac{p - 1}{2}\right)!^2 \equiv -1 \pmod{p} \).
 \textbf{Hint:} Show that \(((p - 1)/2)!^2 \equiv (p - 1)! \pmod{p} \).

4. Prove that if \(n^j \equiv 1 \pmod{m} \) and \(n^k \equiv 1 \pmod{m} \), then \(n^{\gcd(j,k)} \equiv 1 \pmod{m} \).
 \textbf{Hint: Properties of GCD.}

5. A number \(n \) is a perfect number if the sum of all the proper divisors of \(n \) (i.e., all divisors excluding \(n \) itself) is exactly \(n \). For instance, 6 and 28 are both perfect numbers, because
 \[
 \text{sum of proper divisors of 6} = 1 + 2 + 3 = 6, \quad \text{and} \quad \text{sum of proper divisors of 28} = 1 + 2 + 4 + 7 + 14 = 28.
 \]
 In the following, we shall show an interesting result by Euler:

\textbf{Theorem 1.} An even number \(n \) is a perfect number if and only if \(n = 2^m(2^{m+1} - 1) \) and \(2^{m+1} - 1 \) is prime.

(a) Prove that if \(n = 2^m(2^{m+1} - 1) \) and \(2^{m+1} - 1 \) is a prime, then \(n \) is a perfect number.
(b) Suppose \(n \) is an even number, so that we can express \(n \) as \(2^mQ \) for some odd integer \(Q \). Also, suppose \(\sigma(Q) \) denotes the sum of all divisors of \(Q \) (i.e., including itself). Show that if \(n \) is a perfect number, then
 \[
 2^{m+1}Q = 2n = (2^{m+1} - 1)\sigma(Q).
 \]
 (c) Using the result from part (b), show that \(Q \) is a multiple of \(2^{m+1} - 1 \).
 (d) Suppose that \(Q = (2^{m+1} - 1)q \). Show that the following is true:
 \[
 2^{m+1}q = \sigma(Q) \geq q + Q = 2^{m+1}q.
 \]
 (e) Using the result from part (d), show that \(Q \) must be a prime and \(Q = 2^{m+1} - 1 \). In other words, \(n = 2^mQ = 2^m(2^{m+1} - 1) \) for some prime \(Q = 2^{m+1} - 1 \).

6. (Challenging: No marks) Show that for all \(n > 1 \), \(2^n \not\equiv 1 \pmod{n} \).