Outline

• Divisibility
• Greatest Common Divisor
• Fundamental Theorem of Arithmetic
• Modular Arithmetic
• Euler Phi Function
• RSA Cryptosystem

Reference: Course Notes of MIT 6.042J (Fall 05) by Prof. Meyer and Prof. Rubinfeld
RSA Cryptosystem

• A cryptosystem allows a sender to encrypt a message M into some form C so that only the intended receiver can decrypt C back to M
• Most cryptosystems are symmetric, where the sender and the receiver have to share a secret key in order to perform the encoding and decoding
 • we can encrypt if and only if we can decrypt
• Major problem: How can the receiver and sender agree on the secret key in the first place?
RSA Cryptosystem

• In 1977, Rivest, Shamir, and Adleman announced a scheme which does not need a shared secret key

• This is widely known as the RSA cryptosystem
 • Indeed, a similar scheme was invented earlier in 1973 by Ellis and Cocks
 • Since these schemes do not need shared secret keys, they are called public key cryptosystems

• The following describes how RSA works
RSA Cryptosystem

Setup. Receiver performs the following:

• Choose two distinct primes p and q. Let $n = p \cdot q$
• Select an integer e coprime to $\varphi(n)$.
 • The pair (e, n) is the public key and the receiver tells all the others
• Find the unique d such that $ed \equiv 1 \pmod{\varphi(n)}$.
 • The pair (d, n) is the secret key, and the receiver keeps this hidden
RSA Cryptosystem

Encryption. Sender performs the following:

- Get the public key \((e, n)\) of the receiver
- Given a message \(M\), with \(0 < M < n\), encrypt \(M\) by computing
 \[C = M^e \mod n \]
- Send \(C\) to the receiver
RSA Cryptosystem

Decryption. Receiver performs the following:

• Receive C from sender
• Decrypt C by computing

$$M = C^d \text{ rem } n$$

Question: Why does RSA work??
RSA Cryptosystem

Theorem 9:

Decryption of RSA works.

Proof: When M is coprime to n.

Since $ed \equiv 1 \pmod{\varphi(n)}$, there is an integer t such that $ed = 1 + t \varphi(n)$.

Thus

$$C^d \equiv M^{ed} \equiv M^{1 + t\varphi(n)} \equiv M \pmod{n}$$

\Rightarrow

$$M = C^d \rem n$$
RSA Cryptosystem

Proof (cont) : When M is not coprime to n.

Suppose M is a multiple of p (but not q). Then

$$C^d \equiv M^{ed} \equiv 0 \equiv M \pmod{p}$$

$$C^d \equiv M^{ed} \equiv M^{1 + t \varphi(n)}$$

$$\equiv M (M^{q-1})^{t(p-1)} \equiv M \pmod{q}$$

\Rightarrow $C^d - M$ is a multiple of both p and q

\Rightarrow $C^d \equiv M \pmod{n}$ [why?]
RSA Cryptosystem

Ex : Finding Public and Secret Keys

• Suppose receiver chooses primes $p = 7$ and $q = 11$

• Then $n = 77$, with $\varphi(n) = (7 - 1)(11 - 1) = 60$

• Suppose the receiver choose $e = 7$, since 7 is coprime to 60

• The corresponding d becomes 43, since

 \[43 \times 7 = 301 \equiv 1 \pmod{60} \]

⇒ Public key = (7, 77) ; Secret key = (43, 77)
RSA Cryptosystem

Ex: Encryption and Decryption

• If sender wants to send $M = 4$, she encrypts it as
 \[C = 4^7 \mod 77 \]
 \[= 16384 \mod 77 = 60 \]

• When receiver receives $C = 60$, he decrypts it as
 \[M = 60^{43} \mod 77 = 4 \]

Note: $60^2 \equiv 58$, $60^4 \equiv 53$, $60^8 \equiv 37$, $60^{16} \equiv 60$, $60^{32} \equiv 58 \pmod{77}$

\[\Rightarrow 60^{43} \equiv 60^{32} \times 60^8 \times 60^2 \times 60 \]
 \[\equiv 58 \times 37 \times 58 \times 60 \equiv 4 \pmod{77} \]
Security of RSA

• Security of RSA relies on the assumption below:
 Given the public key \((e, n)\) and \(C\), it is difficult to compute the message \(M\)
 ➔ This relies on the assumption that given the public key \((e, n)\), it is difficult to compute \(d\)
 ➔ This further relies on the assumption that it is difficult to factor \(n\) into \(p\) and \(q\)

• It is recommended that \(n\) is at least 2048 bits long
Security of RSA

• Because RSA is now widely used, many people want to break RSA

• Some weaknesses in RSA are known.

Example:

• If the prime factors of either \(p - 1 \) or \(q - 1 \) are all small, the technique by Pollard (1974) can factor \(n \) quickly

• Also true if the prime factors of either \(p + 1 \) or \(q + 1 \) are all small (Williams (1982))
Security of RSA

Theorem 10:

If p and q are ‘close’, then RSA is insecure.

Proof:

If p and q are ‘close’, then $(p + q) / 2$ is not much larger than \sqrt{n} (we know that it is at least as big)

Now, suppose $p > q$ and we set

$$x = (p + q) / 2, \quad y = (p - q) / 2$$
Security of RSA

Proof (cont) :

Thus \(n = p \cdot q \)

\[\begin{align*}
 &= x^2 - y^2 = (x + y)(x - y)
\end{align*} \]

Hence, if an attacker can express \(n \) as a difference of two squares, she can factor \(n \)

To do this, the attacker tests the numbers

\[\left\lfloor \sqrt{n} \right\rfloor, \left\lfloor \sqrt{n} \right\rfloor + 1, \left\lfloor \sqrt{n} \right\rfloor + 2, \ldots \]

until finding \(s \) such that \(s^2 - n \) is a square number
Security of RSA

Proof (cont) :

The number of tests is equal to

\[x - \left\lfloor \sqrt{n} \right\rfloor = \frac{p + q}{2} - \left\lfloor \sqrt{n} \right\rfloor \]

which is small

More precisely, if \(p = (1 + \varepsilon)\sqrt{n} \), then the number of tests is approximately:

\[
\left(\frac{(1+ \varepsilon) + (1+ \varepsilon)^{-1}}{2} - 1 \right) \sqrt{n} = \frac{\varepsilon^2 \sqrt{n}}{2(1+ \varepsilon)}
\]
Security of RSA

Ex: Primes p and q are too close

If $n = 56759$, then the ceiling of its square root is 239.

By testing $s = 239, 240, \ldots$ we find that

$$240^2 - 56759 = 841 = 29^2$$

Thus we have

$$n = 56759 = 240^2 - 29^2 = 269 \times 211$$