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Fundamental Theorem
of Arithmetic



Fundamental Theorem of Arithmetic

Theorem 3:

Any positive integer n > 1 can bewrittenin a
unigque way as a product of primes::

nN=10PP... P (PL<p<...<P)

The above theorem is called the fundamental
theorem of arithmetic

Before we proveit, let us prove a useful lemma



Fundamental Theorem of Arithmetic
Lemma 3:

Let p beaprime.
(1) Ifplab,thenp|aorp|b
(2) If p|aa,...a, then pdivides some a

Proof of (1): gcd(a, p) must be either 1 or p (why?)
If gcd(a, p) = p, then the clam holds.
Elsegcd(a, p) =1, sop | b by Lemma2 (part (4)).

Proof of (2): By induction



Proof of the Fundamental Theorem

* First, we prove (by strong induction) that all n
can be written as a product of primes.

* Basecase: n= 2isaprime.

* Inductive case: Assume all k < n can be written
as product of primes. If nisaprime, then the
statement istrue. Else, n=ab for somea, b <n.
Then by the induction assumption, a and b can
both be written as product of primes, which
Impliesthat n=a- b can be aswell.



Proof of the Fundamental Theorem

* Next, we prove (by contradiction) that all n can
be written as a product of primesin aunique way.

* Suppose the statement is not true

* Let n bethe smallest integer that can be written
as product of primesin more than one way

* Let n = pp,-.. B

= 0,0, ... G
be two of the (possibly many) ways to write n
as a product of primes



Proof of the Fundamental Theorem

* Proof (cont) :
* Then p, | n sothat p, divides some g
* Since g; Isaprime, we must have p; = ¢

* Now we delete p, from the first product, and g,
from the second product, wefindthat n/ p, isa
positive integer smaller than n and can be
written as product of primes in more than one
way =» Contradiction occurs, proof completes



Modular Arithmetic



Modular Arithemetic

Gauss Introduced the notion of congruence in his
book Disguisitiones Arithmeticae

We say aiscongruent to b modulonif n|(a—b)

Itisdenotedby : | a=b (mod n)

For instance,
29=15(mod 7) because 7| (29— 15)



Facts About Congruence

Lemma 4.

Congruence modulo n is an equivalent relation.
Thatis:

1. a=a (modn)

2. a=b (modn) implies b=a (mod n)

3. a=b (modn) and b=c (mod n)
Implies a=c (mod n)




Facts About Congruence
Lemmab5: (Congruence and Remainder)

1. a=(aremn) (mod n)
2. a=b (mod n)
Implies (aremn) = (b remn)

Proof of (2) : Let g, and g, be integers such that
(aremn)=a-qg,n and (bremn)=Db-qg,n
Thus (aremn)— (bremn)
=(@a—b)+n(g,—q,) Isamultipleof n



Facts About Congruence

Lemma 6.
For all n > 1, the following statements hold.

1. a=b (modn) implies a+ c=b+ ¢ (mod n)
2. a=b (modn) implies ac=bc (mod n)
3. a=b (modn) and c=d (mod n)
Implies a+ c=b+ d (mod n)
4., a=b (modn) and c=d (mod n)
Implies ac=bd (mod n)




Cancellation Law

* The previous statements show that under the
same modulo, we can validly perform addition,
subtraction, and multiplication of congruences

* However, division may not be okay.
For instance,

14=4 (mod 10) but 7 = 2 (mod 10)

* The theorem on the next page provides
conditions where division is okay



Cancellation Law

heorem 4

If bc=bd (modn) and gcd(b,n) =1,
then c=d (mod n)

Proof :

Since n | bc—-bd, and gcd(b, n) =1, we have
n| c—d bylLemma?2part (4)



Multiplicative Inverse

* |Infact, the previous theorem can be proved in an
alternative way

Since gcd(b, n) =1, there exists b’ such that
b’b+qgn=1 for some Q.

Thus b’b=1 (mod n). The theorem follows by

multiplying b’ on both sides of the congruence

* Thevaluel’ iscalled the multiplicative inverse
of b modulo n, and isusually denoted by b



Cancellation Law
Corollary 1.

Suppose p isaprime and k is nhot a multiple of p.
Then the sequence:

(0-Kremp, (1-Kyremp, ..., ((p-1) - K) remp
IS a permutation of the sequence
012 ....,p-1

Thisremanstrueif thefirst term of each
sequence Is omitted




Cancellation Law

Proof : The first sequence contains p numbers,
ranging from 0 to p — 1. Also, the numbersin the
first sequence are distinct; otherwise, there exists
distinctiand | (1,] <p) such that
(I-Kremp =(]-k) remp
=2 i-k=)-k(modp) = 1 =] (modp)
which isimpossible. Thus, the first sequence

contains all numbersfromOtop— 1. Theclam
Isstill true if first terms are omitted, as both are O



Fermat’s Little Theorem

heorem 5:

Let pbeaprime. Then for any integer a,
a’=a (mod p)

Proof: If pla, then p| aP—a. Else, we have
(p—D!'=(aremp) (2aremp) ... ((p—1aremp)
=abt (p-1)! (mod p)
The claim follows by multiplying the
multiplicative inverse of (p — 1)! to both sides



Wilson’s Theorem

heorem O:

The congruence
(m-1)!= -1 (modm)
Istrue If and only iIf misaprime




Euler Phi Function



Euler Phi Function

 |f gcd(a, b) =1, wesay aiscoprimetob
(or we say a and b arerelatively prime)
 Euler first studied the following function :

¢@(Nn) = # of positive integers at most n
which are coprimeto n

* () Iscalled the Euler phi function
* Forinstance, ¢(1) =1, ¢(9) =6, ¢(10) =4




Fermat’s Little Theorem (Revisited)
Corollary 2:

Suppose k Is a positive integer coprime to n.
Let ky, ks, ..., Kk, denote al integers coprime to
n,withO<k; <n.

Then the sequence :
(k;- k) remn, (ky k)yremn, ..., (K, K remn
IS a permutation of the sequence::

K Koy s Ko




Euler’s Theorem

heorem 7:

If gcd(k, n) = 1, then
ke =1 (mod n)

Proof

kl. k2° k(P(n)

= (ky kremn) - (k, kremn) - ... - (k, kremn)
= ke K- Ky .. Koy (mod n)



Euler Phi Function
Theorem 8:
The ¢ function can be expressed as :

o(n) = n H(l—%)

p|n

Main |dea of Proof:
Induction on number of prime factors of n



Euler Phi Function

Proof
Base Case. n has one prime factor
In that case, n = g« for some prime q and k
hen out of al numbers from 1 to g,
exactly g« of them are multiples of g

2 o(n) = ¢(d

— qk_ qk—l

= n(1-1/q)




Euler Phi Function

Proof
Inductive Case: n has| prime factors
Letn=0g*n’ for some prime g and k,
with gcd(g, n’) =1
Thus, n’ has exactly | — 1 factors
Now, consider arranging the integers|1, n]
into g« groups, each group with n” integers
hen we have (see next page) .




Euler Phi Function
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Euler Phi Function

Proof (cont) :
Number of integers coprimeton’

=< op(’)

Among these integers, exactly 1/ q of them are
multiples of q (why?)

=» Number of integers coprimeto gn’
=g<o(m) 1-VYg) =nll,,(1-1p)



Euler Phi Function
Corollary 3:
The ¢ function obeys the following properties :

1. Suppose the prime factorization of nis:
n=p%p,>...p% (al p’saredistinct)
Then o(n) = ¢(p,%) o(P%) ... o(p%)
2. Suppose a and b arerelatively prime.
Then ¢(ab) = ¢(a) ¢(b)




