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Fundamental Theorem
of Arithmetic



Fundamental Theorem of Arithmetic
Theorem 3:

Any positive integer n > 1 can be written in a
unique way as a product of primes :

n = p1 p2 …pj (p1 p2 …pj)

The above theorem is called the fundamental
theorem of arithmetic
Before we prove it, let us prove a useful lemma



Lemma 3:

Let p be a prime.
(1) If p | ab, then p | a or p | b
(2) If p | a1a2…an, then p divides some ai

Proof of (1): gcd(a, p) must be either 1 or p (why?)

If gcd(a, p) = p, then the claim holds.
Else gcd(a, p) = 1, so p | b by Lemma 2 (part (4)).

Proof of (2): By induction

Fundamental Theorem of Arithmetic



Proof of the Fundamental Theorem
•First, we prove (by strong induction) that all n

can be written as a product of primes.
•Base case: n = 2 is a prime.
•Inductive case: Assume all k < n can be written

as product of primes. If n is a prime, then the
statement is true. Else, n = a b for some a, b < n.
Then by the induction assumption, a and b can
both be written as product of primes, which
implies that n = ab can be as well.



Proof of the Fundamental Theorem
•Next, we prove (by contradiction) that all n can

be written as a product of primes in a unique way.
•Suppose the statement is not true
•Let n be the smallest integer that can be written

as product of primes in more than one way
•Let n = p1 p2 … pj

= q1 q2 … qk

be two of the (possibly many) ways to write n
as a product of primes



Proof of the Fundamental Theorem
•Proof (cont) :
•Then p1 | n so that p1 divides some qi

•Since qi is a prime, we must have p1 = qi

•Now we delete p1 from the first product, and qi
from the second product, we find that n / p1 is a
positive integer smaller than n and can be
written as product of primes in more than one
way Contradiction occurs, proof completes



Modular Arithmetic



Modular Arithemetic
•Gauss introduced the notion of congruence in his

book Disquisitiones Arithmeticae

•We say a is congruent to b modulo n if n | (a –b)

•It is denoted by : a b (mod n)

•For instance,
29 15 (mod 7) because 7 | (29 –15)



Facts About Congruence
Lemma 4:

Congruence modulo n is an equivalent relation.
That is :

1. a a (mod n)
2. a b (mod n) implies b a (mod n)
3. a b (mod n) and b c (mod n)

implies a c (mod n)



Facts About Congruence
Lemma 5: (Congruence and Remainder)

1. a (a rem n) (mod n)
2. a b (mod n)

implies (a rem n) = (b rem n)

Proof of (2) : Let q1 and q2 be integers such that
(a rem n) = a –q1n and (b rem n) = b –q2n

Thus (a rem n) –(b rem n)
= (a –b) + n (q2–q1) is a multiple of n



Facts About Congruence
Lemma 6:

For all n 1, the following statements hold.

1. a b (mod n) implies a + c b + c (mod n)
2. a b (mod n) implies ac bc (mod n)
3. a b (mod n) and c d (mod n)

implies a + c b + d (mod n)
4. a b (mod n) and c d (mod n)

implies ac bd (mod n)



Cancellation Law
•The previous statements show that under the

same modulo, we can validly perform addition,
subtraction, and multiplication of congruences

•However, division may not be okay.
For instance,

14 4 (mod 10) but 7 62 (mod 10)

•The theorem on the next page provides
conditions where division is okay



Cancellation Law
Theorem 4:

If bc bd (mod n) and gcd(b, n) = 1 ,
then c d (mod n)

Proof :
Since n | bc –bd , and gcd(b, n) = 1, we have
n | c –d by Lemma 2 part (4)



Multiplicative Inverse
•In fact, the previous theorem can be proved in an

alternative way :
Since gcd(b, n) = 1, there exists b’such that

b’b + qn = 1 for some q.
Thus b’b = 1 (mod n). The theorem follows by
multiplying b’on both sides of the congruence

•The value b’is called the multiplicative inverse
of b modulo n, and is usually denoted by b–1



Cancellation Law
Corollary 1:

Suppose p is a prime and k is not a multiple of p.
Then the sequence :
(0k) rem p, (1k) rem p, … , ((p–1) k) rem p
is a permutation of the sequence :

0, 1, 2, …, p –1
This remains true if the first term of each
sequence is omitted



Cancellation Law
Proof : The first sequence contains p numbers,

ranging from 0 to p –1. Also, the numbers in the
first sequence are distinct; otherwise, there exists
distinct i and j ( i, j < p ) such that
(ik) rem p = ( jk ) rem p
 ik jk (mod p)  i j (mod p)
which is impossible. Thus, the first sequence
contains all numbers from 0 to p –1. The claim
is still true if first terms are omitted, as both are 0



Fermat’s Little Theorem
Theorem 5:

Let p be a prime. Then for any integer a ,
ap a (mod p)

Proof: If p | a , then p | ap –a. Else, we have
(p –1)! (a rem p) (2a rem p) … ((p –1)a rem p)

a p–1 (p –1) ! (mod p)
The claim follows by multiplying the
multiplicative inverse of (p –1)! to both sides



Wilson’s Theorem
Theorem 6:

The congruence
(m –1) ! –1 (mod m)

is true if and only if m is a prime



Euler Phi Function



Euler Phi Function
•If gcd(a, b) = 1, we say a is coprime to b

(or we say a and b are relatively prime)
•Euler first studied the following function :

(n) = # of positive integers at most n
which are coprime to n

•(n) is called the Euler phi function
•For instance, (1) = 1, (9) = 6, (10) = 4



Fermat’s Little Theorem (Revisited)
Corollary 2:

Suppose k is a positive integer coprime to n.
Let k1, k2, …, k(n) denote all integers coprime to
n, with 0 ki < n.
Then the sequence :
(k1k) rem n, (k2k) rem n, … , (k(n)k) rem n

is a permutation of the sequence :
k1, k2, …, k(n)



Euler’s Theorem
Theorem 7:

If gcd(k, n) = 1, then
k(n) 1 (mod n)

Proof :
k1k2…k(n)

(k1 k rem n) (k2 k rem n) …(k(n) k rem n)
k(n) k1k2…k(n) (mod n)



Euler Phi Function
Theorem 8:

The function can be expressed as :

(n) = n 
p | n
1 – 1

p 

Main Idea of Proof:
Induction on number of prime factors of n



Euler Phi Function
Proof :

Base Case: n has one prime factor
In that case, n = qk for some prime q and k
Then out of all numbers from 1 to qk ,
exactly qk–1 of them are multiples of q

 (n) = (qk)
= qk–qk–1

= n (1 –1/q)



Euler Phi Function
Proof :

Inductive Case: n has j prime factors
Let n = qk n’for some prime q and k,

with gcd(q, n’) = 1
Thus, n’has exactly j –1 factors
Now, consider arranging the integers [1, n]
into qk groups, each group with n’integers
Then we have (see next page) :



Euler Phi Function
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Euler Phi Function
Proof (cont) :

Number of integers coprime to n’
= qk (n’)

Among these integers, exactly 1/ q of them are
multiples of q (why?)

 Number of integers coprime to qkn’

= qk (n’) (1 –1/q) = n p | n (1 –1/p)



Euler Phi Function
Corollary 3:

The function obeys the following properties :

1. Suppose the prime factorization of n is :
n = p1

e1 p2
e2 … pj

ej (all pi’s are distinct)
Then (n) = (p1

e1) (p2
e2) …(pj

ej)

2. Suppose a and b are relatively prime.
Then (ab) = (a) (b)


