Solution of Assignment 6

Wisely
Question 1

Suppose \((G, \star)\) is a group
Also \((H, \star)\) and \((K, \star)\) are subgroups of \((G, \star)\)

Show that \((H \cap K, \star)\) is a subgroup of \((G, \star)\)
Solution of Question 1

Our target is to show:

(1) ★ is a closed operation in \(H \cap K \)
(2) There exists an identity element \(e' \) in \(H \cap K \)
(3) For each element \(a \), the inverse of \(a \) is in \(H \cap K \)

Closed:

Let \(a, b \) be any two elements in \(H \cap K \)
Then \(a \star b \) is in \(H \) (why?)
Also, \(a \star b \) is in \(K \) (why?)
\(\Rightarrow \) \(a \star b \) is in \(H \cap K \)
Solution of Question 1

Identity:

Let \(e = \text{identity of } (G, \star) \)

Since \((H, \star) \) is subgroup of \((G, \star) \), \(e \) must be in \(H \)

Also \((K, \star) \) is subgroup of \((G, \star) \), \(e \) must be in \(K \)

\(\Rightarrow \) \(e \) is in \(H \cap K \), and it is easy to check that for any element \(a \) in \(H \cap K \), \(e \star a = a \star e = a \)

Inverse:

For any element \(a \) in \(H \cap K \),

inverse of \(a \) is in \(H \) and inverse of \(a \) is in \(K \) (why?)

\(\Rightarrow \) Such inverse \(a^{-1} \) must be in \(H \cap K \) and it is easy to check that \(a^{-1} \star a = a \star a^{-1} = e \)
Question 2

• Suppose \((G, \star)\) is a group and \(e\) be its identity element

• For each element \(g\) in \(G\), we define
 \[
 \text{ord}(g) = \min \text{ positive } k \text{ such that } g^k = e
 \]

• Show that \(\text{ord}(g)\) must divide \(|G|\)
Solution of Question 2

• Our target is to construct the set

$$L=\{g^1, g^2, ..., g^k\}, \text{ where } k = \text{ord}(g)$$

and show that $$(L, \star)$$ is a subgroup of $$(G, \star)$$

Then by Lagrange Theorem, k must divide $|G|$

• To show that $$(L, \star)$$ is a subgroup, it is easy to see that

1. Closed: $$g^i \star g^j = g^{i+j \text{(rem } k)}$$ which is in L
2. Identity exists (by definition $$g^k = e$$)
3. For each $$g^j$$, $$g^{k-j}$$ is in L such that $$g^j \star g^{k-j} = e$$
 $$\Rightarrow$$ inverse exists for each element
Question 3

• A rod is divided into six segments, and each segment will be colored by one of the n colors
• Two colorings are the same if one can be transformed to the other by 180° rotation

• How many distinct colorings?
Solution of Question 3

Let S be the set of all n^6 colorings.

Let (G, \circ) be permutation group such that each permutation in G correspond to a possible mapping of a coloring to another due to a series of rotations.

$\Rightarrow G$ has two elements:

- Identity, rotation 180°
Solution of Question 3

• To find the number of distinct colorings, it is the same to as to find out how many equivalence classes obtained by the relation induced by \((G, \circ)\).

• By Burnside’s Theorem, the number of classes would be:

\[
\frac{n^6 + n^3}{2}
\]
Question 4

- Design a finite automaton that accepts exactly all binary strings each of which ends with 11
Question 5

• A palindrome is a string that reads the same forward and backward

• Show that the language

\[L = \{ w \mid w \text{ is a binary palindrome} \} \]

is non-regular.
Solution of Question 5

Proof (By pumping lemma) :

Assume that L is regular.

- Let p be the pumping length
- First, we see that the string $s = 0^p10^p$ is in L
- Thus by pumping lemma, there is a way to divide s into $s = xyz$ satisfying
 (1) for any $i \geq 0$, the string xy^iz is in L
 (2) $|y| > 0$ and (3) $|xy| \leq p$
Solution of Question 5

Proof (cont) :

⇒ If the above is true, then condition 3 implies that y would contain only 0s
⇒ Then the string $xyyz$ must not be a palindrome (since more 0s before 1 than after 1)
 Thus, contradiction.
⇒ Therefore L is not regular
Question 6

• Suppose \((G, \star)\) is a group, and both \((H, \star)\) and \((K, \star)\) are subgroup of \((G, \star)\)

• Define

\[
HK = \{ \, hk \mid h \text{ in } H \text{ and } k \text{ in } K \, \}
\]

and define \(KH\) similarly.

• Show that \((HK, \star)\) is a subgroup of \((G, \star)\) if and only if \(HK=KH\).
Solution of Question 6

Proof (if case):

Our target is to show that $HK \subseteq KH$ and $KH \subseteq HK$
This will then imply $KH = HK$

• First, suppose x is in HK
Then the inverse of x must be in HK
 (since HK is a subgroup)
 ➔ Say $x^{-1} = hk$ for some h in H and k in K
 ➔ Then, $x = k^{-1}h^{-1}$ so that x is in KH
Solution of Question 6

Proof (if case):

• Next, suppose x is in KH
 ➞ Say $x^{-1} = kh$ for some h in H and k in K
 ➞ Then the inverse of x is $h^{-1}k^{-1}$
 which is in HK (since h^{-1} in H and k^{-1} in K)
 ➞ Then, x is in HK (since HK is a group)
Solution of Question 6

Proof (only if case):

We want to show that

if \(HK = KH \), then \((HK, \star)\) is a group

Our target is to show:

1. \(\star \) is closed

 Let \(x = h_0k_0 = k_1h_1 \) and \(y = h_2k_2 = k_3h_3 \)

 \[x \star y = h_0k_0k_3h_3 = h_0k_4h_3 = h_0h_5k_5 = h_6k_5 \]

 \(x \star y \) is in \(HK \)

2. Identity exists (easy)

3. Inverse exists (easy)
Question 7

- Let D be the set of binary strings where each string has equal # of substrings 01 and 10

- Show that D is a regular language