Solution of Assignment 6

Wisely

Suppose (G, \bigstar) is a group

Also (H, \bigstar) and (K, \bigstar) are subgroups of (G, \bigstar)

Show that $(H \cap K, \bigstar)$ is a subgroup of (G, \bigstar)

Our target is to show:

- (1) \bigstar is a closed operation in $H \cap K$
- (2) There exists an identity element e' in $H \cap K$
- (3) For each element a, the inverse of a is in $H \cap K$

Closed:

Let a, b be any two elements in $H \cap K$

Then $a \bigstar b$ is in H (why?)

Also, $a \bigstar b$ is in K (why?)

 $\rightarrow a \bigstar b$ is in $H \cap K$

Identity:

Let $e = identity of (G, \bigstar)$

Since (H, \bigstar) is subgroup of (G, \bigstar) , e must be in H

Also (K, \bigstar) is subgroup of (G, \bigstar) , e must be in K

igoplus e is in $H \cap K$, and it is easy to check that for any element a in $H \cap K$, $e \not \bigstar a = a \not \bigstar e = a$

Inverse:

For any element a in $H \cap K$,

inverse of a is in H and inverse of a is in K (why?)

Such inverse a^{-1} must be in $H \cap K$ and it is easy to check that $a^{-1} \bigstar a = a \bigstar a^{-1} = e$

- Suppose (G, \bigstar) is a group and e be its identity element
- For each element g in G, we define $ord(g) = \min positive <math>k$ such that $g^k = e$

• Show that ord(g) must divide |G|

• Our target is to construct the set

$$L=\{g^1, g^2, ..., g^k\}$$
, where $k=ord(g)$ and show that (L, \bigstar) is a subgroup of (G, \bigstar)
Then by Lagrange Theorem, k must divide $|G|$

- To show that (L, \bigstar) is a subgroup, it is easy to see that
 - (1) Closed: $g^i \bigstar g^j = g^{i+j \text{ (rem } k)}$ which is in L
 - (2) Identity exists (by definition $g^k = e$)
 - (3) For each g^j , g^{k-j} is in L such that $g^j \bigstar g^{k-j} = e$
 - inverse exists for each element

- A rod is divided into six segments, and each segment will be colored by one of the *n* colors
- Two colorings are the same if one can be transformed to the other by 180° rotation

• How many distinct colorings?

Let S be the set of all n^6 colorings.

Let (G, \circ) be permutation group such that each permutation in G correspond to a possible mapping of a coloring to another due to a series of rotations.

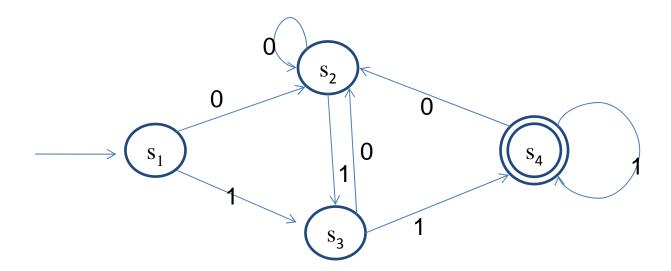
 \rightarrow G has two elements:

Identity, rotation 180°

- To find the number of distinct colorings, it is the same to as to find out how many equivalence classes obtained by the relation induced by (G, \circ)
- By Burnside's Theorem, the number of classes would be:

$$(n^6 + n^3) / 2$$

• Design a finite automaton that accepts exactly all binary strings each of which ends with 11



• A *palindrome* is a string that reads the same forward and backward

Show that the language

 $L = \{ w \mid w \text{ is a binary palindrome } \}$ is non-regular.

Proof (By pumping lemma):

Assume that *L* is regular.

- \rightarrow Let p be the pumping length
- \rightarrow First, we see that the string $s = 0^p 10^p$ is in L
- Thus by pumping lemma, there is a way to divide s into s = xyz satisfying
 - (1) for any $i \ge 0$, the string xy^iz is in L
 - (2) |y| > 0 and (3) $|xy| \le p$

Proof (cont):

- → If the above is true, then condition 3 implies that y would contain only 0s
- → Then the string *xyyz* must not be a palindrome (since more 0s before 1 than after 1)

 Thus, contradiction.
- \rightarrow Therefore L is not regular

- Suppose (G, \bigstar) is a group, and both (H, \bigstar) and (K, \bigstar) are subgroup of (G, \bigstar)
- Define

 $HK = \{ hk \mid h \text{ in } H \text{ and } k \text{ in } K \}$ and define KH similarly.

• Show that (HK, \bigstar) is a subgroup of (G, \bigstar) if and only if HK=KH.

Proof (if case):

Our target is to show that $HK \subseteq KH$ and $KH \subseteq HK$ This will then imply KH = HK

- First, suppose x is in HK
 Then the inverse of x must be in HK
 (since HK is a subgroup)
 - \rightarrow Say $x^{-1} = hk$ for some h in H and k in K
 - \rightarrow Then, $x = k^{-1}h^{-1}$ so that x is in KH

Proof (if case):

- Next, suppose *x* is in *KH*
 - \rightarrow Say $x^{-1} = kh$ for some h in H and k in K
 - Then the inverse of x is $h^{-1}k^{-1}$ which is in HK (since h^{-1} in H and k^{-1} in K)
 - \rightarrow Then, x is in HK (since HK is a group)

Proof (only if case):

We want to show that

if HK = KH, then (HK, \bigstar) is a group

Our target is to show:

 $(1) \bigstar$ is closed

Let
$$x = h_0 k_0 = k_1 h_1$$
 and $y = h_2 k_2 = k_3 h_3$

$$\rightarrow x \neq y = h_0 k_0 k_3 h_3 = h_0 k_4 h_3 = h_0 h_5 k_5 = h_6 k_5$$

- $\rightarrow x \bigstar y$ is in HK
- (2) Identity exists (easy)
- (3) Inverse exists (easy)

- Let *D* be the set of binary strings where each string has equal # of substrings 01 and 10
- Show that D is a regular language

