
1

Assignment 5

Speaker: Wisely
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Question 1

• Suppose F(x) is a polynomial such that all the 
coefficients are integers  

Also F(0) = F(1) = 1

• Show that F does not have any integral root.
That is, no integer z such that F(z) = 0
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Solution :
Since F(0) = F(1) = 1 ,

F(x)  =  xQ(x)+1 
and F(x)  = (x – 1)Q’(x)+1

When z is even, 
F(z) = zQ(z)+1 ≠ even

When x is odd, 
F(z) = (z – 1)Q’(z)+1 ≠ even

Thus, no integer z can be a root



4

Question 2

• Show that if n is an odd number, then

1 × 3 × 5 × ... × (2n – 1) 
+ 2 × 4 × 6 × ... × (2n)

is a multiple of 2n + 1
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Solution :
1 × 3 × 5 × ... × (2n – 1) + 2 × 4 × 6 × ... × (2n)

≣2n+1 1 × 3 × 5 × ... × (2n – 1) 
+ (–(2n–1)) × (–(2n–3)) × ... ×(–3) × (–1)

≣2n+1  0   (∵ n is odd.)

Thus, 1 × 3 × 5 × ... × (2n – 1) + 2× 4 × 6 × ... × (2n)
is a multiple of 2n + 1
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Question 3

• Let p be a prime

• Show that if there exists n such that 

n2 ≣ – 1     (mod p) , 

then p ≣ 3 (mod 4)
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Proof:
Assume there exists n such that 

n2 ≣ – 1     (mod p)  

If  p ≣ 3 (mod 4),                           (mod p) 

But, by the Fermat’s Little Theorem, 
(mod p)

Thus, p ≣ 3 (mod 4).
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Question 4

• Let p be a prime 
• Let a and b be two integers coprime to p

• Show that 
ax ≣ b (mod p) 

if and only if 
x ≣ ap–2b      (mod p)
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Proof :  
[ ]
Since (a, p) = 1,  if we multiply ap–2 to both sides of 
ax ≣ b, we have : 

ap–2 ax ≣ x ≣ ap–2 b   (mod p)

[ ]  
Suppose  x ≣ ap–2b    (mod p).  Then we have :

ax ≣ ap–1b ≣ b (mod p)
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Question 5

• Prove that if 

nj ≣ 1  (mod m)   and   nk≣ 1  (mod m), 

then    ngcd( j, k ) ≣ 1 (mod m)
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Proof :
Assume aj – bk = gcd(j, k)

Then we have :

(mod m)

Since                 (mod m) ,                      (mod m) 

1),gcd( ≡= ajkjbk nnn

1≡bkn 1),gcd( ≡kjn
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Question 6
• Prove that φ(nm) = nm–1φ(m)
• Proof :
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Question 7

• Compute φ(999)

• Solution :  
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Question 8

• n is a perfect number if the sum of all the 
proper divisors of n is exactly n

• Example:  
6    =  1 + 2 + 3          =  6
28  =  1 + 2+4 + 7 + 14  =  28
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Question 8

Theorem 1 (By Euler). 
An even number n is a perfect number if and 
only if 

n = 2m(2m+1 – 1)  and 2m+1 – 1 is prime

• Show that Theorem 1 is correct
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Proof :
( )
Since n = 2m(2m+1 – 1)  and 2m+1 – 1 is prime, 
all the divisors of n are 

1,  2,  22,  23,       … ,  2m-1,   2m,
(2m+1 – 1), 2 (2m+1 – 1),      … ,  2m(2m+1 – 1)

Thus, the sum of these divisors is exactly 
(2m+1 – 1)+(2m+1 – 1) (2m+1 – 1) = 2n



Proof : ( ) 
Suppose n is an even number, so that we can express 
n as 2mQ for some odd integer Q
Let σ(Q) = the sum of all divisors of Q

Let d1, d2, .., dk be all the divisors of Q
Then the divisors of n are :

1, 2, 22, 23,…, 2m,
d1, 2d1, 22d1,…, 2md1,

….
dk, 2dk, 22dk,…, 2mdk
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Proof (cont) :
The sum of all the divisors of n is :
(2m+1 – 1)[1+d1+d2+…+ dk] = (2m+1 – 1) σ(Q) 
Thus, for n to be perfect, we need :

2n = 2m+1Q = (2m+1–1)σ(Q) .

Since (2m+1, 2m+1 – 1) = 1, 
Q would be a multiple of 2m+1 –1

Suppose Q= (2m+1 – 1)q 
σ(Q) ≧ Q + q (by the definition of σ(Q) ).
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Proof (cont) :
Then,  2m+1q = σ(Q) ≧Q+q= 2m+1q
Equivalently,

σ(Q) = Q+q
Q must be a prime (by definition ofσ(Q))
q must be 1

Thus, n = 2m (2m+1–1) and (2m+1–1) is a prime
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Question 9

• Show that for all n > 1, 

2n ≣ 1 (mod n)
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Proof :
Let n=pQ, where p = smallest prime divisor of n

Suppose on the contrary that   2n ≣1    (mod n) 
Then 2n ≣ 1 (mod p)
Also 2p–1 ≣ 1 (mod p) 
By Question 5, we have    

2gcd(p–1,n) ≣1   (mod p)
However, by the choice of p, n has no divisor less 
than p  gcd(p –1, n) = 1
Thus, 2≣1  (mod p) and a contradiction occurs


