CS2335 Special Topics in Discrete Structure

Homework 5

Due: 1:10 pm, December 14, 2009 (before class)

- 1. Suppose F(x) is a polynomial such that all the coefficients are integers. Furthermore, it is known that F(0) = F(1) = 1. Show that F does not have any integral root. (In other words, there is no integer z such that F(z) = 0.)
- 2. Show that if n is an odd number, then

$$1 \times 3 \times 5 \times \cdots \times (2n-1) + 2 \times 4 \times 6 \times \cdots \times (2n)$$

is a multiple of 2n + 1.

3. Let p be a prime. Show that if there exists n such that

$$n^2 \equiv -1 \pmod{p}$$
,

then $p \not\equiv 3 \pmod{4}$. Hint: Fermat's little theorem.

4. Let p be a prime. Let a and b be two integers coprime to p. Show that

$$ax \equiv b \pmod{p}$$
 if and only if $x \equiv a^{p-2}b \pmod{p}$.

5. Prove that if $n^j \equiv 1 \pmod{m}$ and $n^k \equiv 1 \pmod{m}$, then

$$n^{\gcd(j,k)} \equiv 1 \pmod{m}$$
.

Hint: Properties of GCD.

- 6. Prove that $\varphi(n^m) = n^{m-1}\varphi(n)$.
- 7. Compute $\varphi(999)$.
- 8. (Challenging: No marks) A number n is a perfect number if the sum of all the proper divisors of n (i.e., all divisors excluding n itself) is exactly n. For instance, 6 and 28 are both perfect numbers, because

sum of proper divisors of
$$6 = 1+2+3 = 6$$
, and sum of proper divisors of $28 = 1+2+4+7+14 = 28$.

In the following, we shall show an interesting result by Euler:

Theorem 1. An even number n is a perfect number if and only if $n = 2^m(2^{m+1} - 1)$ and $2^{m+1} - 1$ is prime.

- (a) Prove that if $n = 2^m(2^{m+1} 1)$ and $2^{m+1} 1$ is a prime, then n is a perfect number.
- (b) Suppose n is an even number, so that we can express n as 2^mQ for some odd integer Q. Also, suppose $\sigma(Q)$ denotes the sum of all divisors of Q (i.e., including itself). Show that if n is a perfect number, then

1

$$2^{m+1}Q = 2n = (2^{m+1} - 1)\sigma(Q).$$

- (c) Using the result from part (b), show that Q is a multiple of $2^{m+1} 1$.
- (d) Suppose that $Q = (2^{m+1} 1)q$. Show that the following is true:

$$2^{m+1}q = \sigma(Q) \ge q + Q = 2^{m+1}q.$$

- (e) Using the result from part (d), show that Q must be a prime and $Q = 2^{m+1} 1$. In other words, $n = 2^m Q = 2^m (2^{m+1} 1)$ for some prime $Q = 2^{m+1} 1$.
- 9. (Challenging: No marks) Show that for all n > 1, $2^n \not\equiv 1 \pmod{n}$.