Solutions of Assignment 4

Speaker: Wisely

- Consider a figure formed by removing any 1×1 square inside a $2^n \times 2^n$ square.
- Show that the figure can be covered by nonoverlapping L-shaped tiles

Proof (By Induction):

Base case (n=1): Trivial.

Inductive case (assume n=k is true): Consider n=k+1. We separate $2^{k+1} \times 2^{k+1}$ square into four squares as below

For those three $2^k \times 2^k$ squares that do not contain the removed square, we select a corner from each of them, and cover them by an L-shaped tile as shown below

- → By the inductive hypothesis,
 each of them can now be covered by L-shaped tiles
- → This completes the proof

- Consider a $2m \times 2n$ grid, with
 - -Each grid point is either colored red or blue
 - -For any row or column,
 - # red points = # blue points
- When two adjacent points have the same color, we join them by a line of that color
- Show that no matter how the points are colored,

```
# red lines = # blue lines
```

Proof (By Induction):

We prove that for any m,

vertical red lines = # vertical blue lines in any $m \times 2n$ grid

Base case (m=1): Trivial, since there are no lines Inductive Case (assume that m=k is true):

Each of the last two rows has n red and n blue points Let x = # of vertical pairs with different colors

- Thus, there are (2n x)/2 vertical red pairs (lines) and there are (2n x)/2 vertical blue pairs (lines)
- → Inductive case is true


```
Similarly, we can show that for any n,

# horizontal red lines = # horizontal blue lines
in any 2m \times n grid
```

```
In conclusion, in any 2m \times 2n,

# red lines = # blue lines
```

- Give a sequence of n integers a_1 , a_2 , a_3 , ..., a_n
- Show that there exists a contiguous subsequence whose sum is divisible by n.

Proof:

Let
$$S_i = a_1 + a_2 + ... + a_i$$
, where $1 \le i \le n$

Let
$$r_i = S_i \operatorname{rem} n$$

There are two cases.

Case 1: Some $r_i = 0$

- \rightarrow a_1, a_2, \dots, a_i is the desired subsequence
- Case 2: All r_i are between 1 and n-1
 - By Pigeonhole Principle, there must exist $r_i = r_j$, for some j > i.
 - \rightarrow a_i, a_{i+1}, \dots, a_j is the desired subsequence

- Suppose n + 1 integers are chosen from 1 to 2n
- Show that there exist two of the chosen numbers which are relatively prime

Proof:

We partition the 2n integers into n boxes as follows:

 $(1,2) \qquad (2n-3,2n-2) \qquad (2n-1,2n)$

By Pigeonhole Principle, when we choose n + 1 integers, two integers must be chosen from the same box

→ These two chosen integers are relatively prime

- There are 100 people at a party.
- Each has even number (possible 0) of friends
- Prove that we can always find three people with the same number of friends

Proof: There are three cases.

Case 1: At most 1 person has 0 friends

- → # friends for each remaining person is from 2 to 98
- → By Generalized Pigeonhole Principle, at least three persons have same # friends

Case 2: Exactly two persons has 0 friends

→ # friends for each remaining person is from 2 to 96

Case 3: At least three persons has 0 friends

→ Trivial

- Let $P = (v_1, v_2, ..., v_n)$ be a path with n vertices
- Show that we can assign each vertex v_i a distinct integer f(i) chosen from 1 to n, such that

$$| f(i) - f(i+1) |$$

for i = 1, 2, ..., n - 1 are all distinct

Proof:

We assign each vertex a value in the following way:

