CS2335 Special Topics in Discrete Structure

Homework 3

Due: 1:10 pm, November 23, 2009 (before class)

1. Solve the following recurrence relations.

(a)
$$\begin{cases} a_n = 5a_{n-1} + 6a_{n-2}, & n \ge 2\\ a_0 = 1\\ a_1 = 3 \end{cases}$$

(b)
$$\begin{cases} 2a_{n+2} - 11a_{n+1} + 5a_n = 0, & n \ge 0\\ a_0 = 2\\ a_1 = -8 \end{cases}$$

(c)
$$\begin{cases} a_n - 6a_{n-1} + 9a_{n-2} = 0, & n \ge 2\\ a_0 = 5\\ a_1 = 12 \end{cases}$$

2. Solve the following recurrence relations.

(a)
$$\begin{cases} a_{n+1} - a_n = 2n + 3, & n \ge 0\\ a_0 = 1 \end{cases}$$

(b)
$$\begin{cases} a_{n+1} - a_n = 2n^2 - n, & n \ge 0\\ a_0 = 3 \end{cases}$$

(c)
$$\begin{cases} a_{n+1} - 2a_n = 2^n, & n \ge 0\\ a_0 = 1 \end{cases}$$

3. Solve the following recurrence relations by the method of generating functions.

(a)
$$\begin{cases} a_{n+2} - 2a_{n+1} + a_n = 2^n, & n \ge 0\\ a_0 = 1\\ a_1 = 2 \end{cases}$$

(b)
$$\begin{cases} a_{n+1} = 2a_n - b_n + 2, & n \ge 0\\ b_{n+1} = -a_n + 2b_n - 1, & n \ge 0\\ a_0 = 0\\ b_0 = 1 \end{cases}$$

- 4. Let a_n denote the number of *n*-bit binary strings in which the pattern 111 occurs exactly twice, with the second occurrence at the *n*th bit. Find the generating function for (a_0, a_1, \ldots) .
- 5. (a) Let b_n denote the number of *n*-bit binary strings in which the pattern 11011 first occurs at the *n*th bit. Find the generating function for (b_0, b_1, \ldots) .
 - (b) Let c_n denote the number of *n*-bit binary strings in which the pattern 11011 occurs at the *n*th bit. Using the result of part (a), find the generating function for (c_0, c_1, \ldots) .
- 6. Let d_n be the number of ways to completely cover a $2 \times n$ rectangle with 2×1 dominoes. Express d_n in terms of n. (Show your steps.)