
CS5371 Theory of Computation

Homework 5 (Solution)

1. Let S be a set and let C be a collection of subsets of S. A set S ′, with S ′ ⊆ S, is a called
a hitting set for C if every subset in C contains at least an element in S ′. Let HITSET be
the language

{〈C, k〉 | C has a hitting set of size k}.
Prove that HITSET is NP-complete.

Answer: It is easy to check that HITSET is in NP (why?). To see why HITSET is NP-
complete, we observe that we can reduce VERTEX-COVER to HITSET: Given a graph
G = (V,E), we set S = V and C = E, then immediately we have G has a vertex cover of
size k if and only if C has a hitting set of size k. As VERTEX-COVER is NP-complete,
the reduction (obviously) takes polynomial time, and HITSET is in NP, we have proved
that HITSET is NP-complete.

2. Let U be the language

{〈M, x, #t〉 | TM M accepts input x within t steps on at least one branch}.

Show that U is NP-complete. (For this problem, you are required to prove it without using
reduction from any known NP-complete problems.)

Answer: To see why U is in NP, we observe that there is an NTM N that recognizes U in
polynomial time, such that for any 〈M,x, #t〉 ∈ U , N guesses the t choices of the branch
for M to accept x within t steps.

To see why U is NP-complete, let A be any language in NP. Since A is in NP, there exists
an NTM NA that accepts any string y in A within |y|k steps, for some k. Then, we can
reduce A to U as follows: Given any input string y, we set M = NA, x = y and t = k;
immediately, we have y in A if and only if 〈M, x, #t〉 in U . As the reduction is polynomial
time, we have shown that any language in NP is polynomial time reducible to U . As U is
in NP, so by definition U is NP-complete.

Further Question: Will the above proof still be okay when U is replaced by the following
language U ′:

{〈M, x, t〉 | TM M accepts input x within t steps on at least one branch}.

3. We say a language A is in coNP if its complement, A, is in NP. We call a regular expression
star-free if it does not contain any star operations. Let EQSF RFX be the language

{〈R, S〉 | R, S are equivalent star-free regular expressions}.

Show that EQSF RFX is in coNP. Why does your argument fail for general regular expres-
sions?

Answer: To show that EQSF RFX is in NP, we observe that a string x is in EQSF RFX if
and only if it is one of the following forms:

(a) x does not represent a valid encoding of two regular expressions;
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(b) x is of the correct form 〈R, S〉, but either R, or S, or both are not star-free;

(c) x is of the correct form 〈R, S〉, R and S are both star-free, but L(R) 6= L(S).

If x is in the first and the second form, x can be accepted by a DTM easily in polynomial
time. If x is in the third form, there exists a string y that is in exactly one of the L(R) or
L(S). As R and S are star-free, the length of y must be polynomial in the size of |R|+ |S|
(why?). Thus, there is an NTM N that guesses such a string y in polynomial time whenever
x is of the third form (but will never find such a string y when L(R) = L(S)). Thus, there
exists an NTM that recognizes EQSF RFX in polynomial time. This completes the proof.

4. (Choose either Q4 or Q5.) Show that the following problem is NP-complete. You are
given a set of states Q = {q0, q1, . . . , q`} and a collection of pairs Π = {(s1, r1), . . . , (sk, rk)}
where the si are distinct strings over Σ = {0, 1}, and the ri are (not necessarily distinct)
members of Q. Determine whether a DFA M = (Q, Σ, δ, q0, F ) exists where δ(q0, si) = ri

for each i. Here, the notation δ(q, s) stands for the state that M enters after reading s,
starting at state q. (Note that F is irrelevant here).

Answer: (sketch) To show that the above problem is in NP, we observe that an NTM
can guess the correct DFA satisfying the constraints Q and Π in polynomial time if and
only if such a DFA exists.

To show that the above problem is NP-complete, we reduce the NP-complete problem
3SAT to it: Given a 3cnf-formula F , say, F =

∧k
i=1 Ci and Ci = (xi∨ yi∨ zi), we construct

the following constraints Q and Π:

(a) Q = {qT , qF , q1, q2};
(b) Create a pair (ε, qF ) in Π to enforce qF to be the start state;

(c) For each variable x in F , create the following two pairs in Π: (xx, qT ) and (xx, qT );

(d) For each clause Ci in F , create a pair (xiyizi, qT ) in Π;

(e) For each variable x in F , create the following two pairs in Π: (x#x, q1) and (x#x, q2),
where these two pairs enforce that after reading x and after reading x, DFA must be
in different states;

(f) Pick any variable x in F . Then, for each variable y, create the following three pairs
in Π: (xxy, qT ), (x#xy, q1), (x#xy, q2).

We claim that F is satisfiable if and only if there exists a DFA satisfying the constraints
Q and C. (The proof of the claim is left as a further exercise.) As the reduction takes
polynomial time, this completes the proof.

5. (Choose either Q4 or Q5.) Consider the algorithm MINIMIZE, which takes a DFA M as
input and outputs DFA M ′.

MINIMIZE = “On input 〈M〉, where M = (Q, Σ, δ, q0, A) is a DFA:

1. Remove all states of M that are unreachable from the start state.

2. Construct the following undirected graph G whose nodes are the states of M .

3. Place an edge in G connecting every accept state with every nonaccept state. Add
additional edges as follows.

4. Repeat until no new edges are added to G:
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5. For every pair of distinct states q and r of M and every a ∈ Σ:

6. Add the edge (q, r) to G if (δ(q, a), δ(r, a)) is an edge of G.

7. For each state q, let [q] be the collection of states

[q] = {r ∈ Q | no edge joins q and r in G}.

8. Form a new DFA M ′ = (Q′, Σ, δ′, q′0, A
′) where

• Q′ = {[q] | q ∈ Q}, (if [q] = [r], only one of them is in Q′),
• δ′([q], a) = [δ(q, a)], for every q ∈ Q and a ∈ Σ,

• q′0 = [q0], and

• A′ = {[q] | q ∈ A}.
9. Output 〈M ′〉.”

A. Show that M and M ′ are equivalent.

B. Show that M ′ is minimal—that is, no DFA with fewer states recognizes the same
language. You may use the Myhill-Nerode Theorem.

C. Show that MINIMIZE operates in polynomial time.

Answer:

A. Firstly, if a string x = x1x2 · · · xt of length t is accepted by M , there exists a sequence
of states, qi0 , qi1 , . . . , qit such that qi0 = q0, qij = δ(qij−1

, xj), and qit ∈ F . This implies
that x can be accepted by M ′ based on the the sequence of states [qi0 ], [qi1 ], . . . , [qit ]
such that [qi0 ] = [q0], [qij ] = δ′([qij−1

], xj), and [qit ] ∈ F ′. Thus, L(M) ⊆ L(M ′).

Secondly, if a string y = y1y2 · · · xt of length t is accepted by M ′, let [qi0 ], [qi1 ], . . . , [qit ]
be the set of states such that [qi0 ] = [q0], [qij ] = δ′([qij−1

], xj), and [qit ] ∈ F ′. By
induction, we can show that when y is input to M , the corresponding sequence of
states visited by M , say r0, r1, r2, . . . , rt, will satisfy r0 = q0, and rj ∈ [qij ] for all
j. Now, as [qit ] ∈ F ′, we know that [qit ] ⊆ F (why?). Thus, rt ∈ F , so that
L(M ′) ⊆ L(M).

In conclusion, L(M) = L(M ′), so that M and M ′ are equivalent.

B. Let δ(q0, x) denote the state of M after reading x when M starts from q0. By induction,
we can show that for two distinct states q and r in the undirected graph G, q and r are
connected by an edge if and only if there exists strings x and y such that δ(q0, x) = q,
δ(q0, y) = r, and x, y are distinguishable by L(M).

Based on the above result, [q] will store the all states q′ such that for all x, y with
δ(q0, x) = q and δ(q0, y) = q′, x and y are indistinguishable. Also, for any q′ ∈ [q], we
observe that [q′] = [q] (why?).

In other words, the distinct set of states [q] in Q′ forms a partition of Q. By picking
one string x with δ(q0, x) ∈ q for each distinct [q], the resulting |Q′| strings are pairwise
distinguishable by L(M) (why?). By Myhill-Nerode theorem, any DFA recognizing
L(M) must have at least |Q′| states.

As M ′ has |Q′| states and L(M) = L(M ′), M ′ is a minimal.
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C. Let |Q| = n. Step 1 takes at most O(n3 + n2|Σ|) time, by using the brute force
connectivity algorithm. For Step 3, it takes O(n2) time. For Step 4, it repeats Steps
5 and 6 for at most O(n2) times, each repetition takes at most O(n2|Σ|) time. For
Step 7, it is done in O(n2) time. For Step 8, we first check if [q] = [r] for each pair of
q and r, which requires O(n3) time; this naturally gives a partition of Q’s states, and
the partition can be stored in a table; then, we construct the final DFA M ′, which
takes an additional O(n2|Σ|) time.

In total, the time required for constructing M ′ is O(n4|Σ|), which is polynomial in
the length of the input 〈M〉.
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