1. Let S be a set and let C be a collection of subsets of S. A set S', with $S' \subseteq S$, is a called a hitting set for C if every subset in C contains at least an element in S'. Let HITSET be the language
\[
\{\langle C, k \rangle \mid C \text{ has a hitting set of size } k\}.
\]
Prove that HITSET is NP-complete.

Answer: It is easy to check that HITSET is in NP (why?). To see why HITSET is NP-complete, we observe that we can reduce VERTEX-COVER to HITSET: Given a graph $G = (V, E)$, we set $S = V$ and $C = E$, then immediately we have G has a vertex cover of size k if and only if C has a hitting set of size k. As VERTEX-COVER is NP-complete, the reduction (obviously) takes polynomial time, and HITSET is in NP, we have proved that HITSET is NP-complete.

2. Let U be the language
\[
\{\langle M, x, #^t \rangle \mid \text{TM } M \text{ accepts input } x \text{ within } t \text{ steps on at least one branch}\}.
\]
Show that U is NP-complete. (For this problem, you are required to prove it without using reduction from any known NP-complete problems.)

Answer: To see why U is in NP, we observe that there is an NTM N that recognizes U in polynomial time, such that for any $\langle M, x, #^t \rangle \in U$, N guesses the t choices of the branch for M to accept x within t steps.

To see why U is NP-complete, let A be any language in NP. Since A is in NP, there exists an NTM N_A that accepts any string y in A within $|y|^k$ steps, for some k. Then, we can reduce A to U as follows: Given any input string y, we set $M = N_A$, $x = y$ and $t = k$; immediately, we have y in A if and only if $\langle M, x, #^t \rangle$ in U. As the reduction is polynomial time, we have shown that any language in NP is polynomial time reducible to U. As U is in NP, so by definition U is NP-complete.

Further Question: Will the above proof still be okay when U is replaced by the following language U':
\[
\{\langle M, x, t \rangle \mid \text{TM } M \text{ accepts input } x \text{ within } t \text{ steps on at least one branch}\}.
\]

3. We say a language A is in coNP if its complement, \overline{A}, is in NP. We call a regular expression star-free if it does not contain any star operations. Let EQ_{SF_RFX} be the language
\[
\{\langle R, S \rangle \mid R, S \text{ are equivalent star-free regular expressions}\}.
\]
Show that EQ_{SF_RFX} is in coNP. Why does your argument fail for general regular expressions?

Answer: To show that $\overline{EQ_{SF_RFX}}$ is in NP, we observe that a string x is in $\overline{EQ_{SF_RFX}}$ if and only if it is one of the following forms:

(a) x does not represent a valid encoding of two regular expressions;
(b) x is of the correct form $\langle R, S \rangle$, but either R, or S, or both are not star-free;
(c) x is of the correct form $\langle R, S \rangle$, R and S are both star-free, but $L(R) \neq L(S)$.

If x is in the first and the second form, x can be accepted by a DTM easily in polynomial time. If x is in the third form, there exists a string y that is in exactly one of the $L(R)$ or $L(S)$. As R and S are star-free, the length of y must be polynomial in the size of $|R| + |S|$ (why?). Thus, there is an NTM N that guesses such a string y in polynomial time whenever x is of the third form (but will never find such a string y when $L(R) = L(S)$). Thus, there exists an NTM that recognizes $\overline{\mathcal{EQ}_{SF, x, RFX}}$ in polynomial time. This completes the proof.

4. (Choose either Q4 or Q5.) Show that the following problem is NP-complete. You are given a set of states $Q = \{q_0, q_1, \ldots, q_6\}$ and a collection of pairs $\Pi = \{(s_1, r_1), \ldots, (s_k, r_k)\}$ where the s_i are distinct strings over $\Sigma = \{0, 1\}$, and the r_i are (not necessarily distinct) members of Q. Determine whether a DFA $M = (Q, \Sigma, \delta, q_0, F)$ exists where $\delta(q_0, s_i) = r_i$ for each i. Here, the notation $\delta(q, s)$ stands for the state that M enters after reading s, starting at state q. (Note that F is irrelevant here).

Answer: (sketch) To show that the above problem is in NP, we observe that an NTM can guess the correct DFA satisfying the constraints Q and Π in polynomial time if and only if such a DFA exists.

To show that the above problem is NP-complete, we reduce the NP-complete problem 3SAT to it: Given a 3cnf-formula F, say, $F = \bigwedge_{i=1}^{k} C_i$ and $C_i = (x_i \lor y_i \lor z_i)$, we construct the following constraints Q and Π:

(a) $Q = \{q_{R}, q_{F}, q_1, q_2\}$;
(b) Create a pair (ε, q_F) in Π to enforce q_F to be the start state;
(c) For each variable x in F, create the following two pairs in Π: $(x\overline{x}, q_R)$ and $(\overline{x}x, q_R)$;
(d) For each clause C_i in F, create a pair (x_iy_i, q_T) in Π;
(e) For each variable x in F, create the following two pairs in Π: $(x\#_x, q_1)$ and $(\overline{x}\#_x, q_2)$, where these two pairs enforce that after reading x and after reading \overline{x}, DFA must be in different states;
(f) Pick any variable x in F. Then, for each variable y, create the following three pairs in Π: $(x\overline{xy}, q_T)$, $(x\#_x y, q_1)$, $(\overline{x}\#_x y, q_2)$.

We claim that F is satisfiable if and only if there exists a DFA satisfying the constraints Q and C. (The proof of the claim is left as a further exercise.) As the reduction takes polynomial time, this completes the proof.

5. (Choose either Q4 or Q5.) Consider the algorithm MINIMIZE, which takes a DFA M as input and outputs DFA M'.

\textbf{MINIMIZE} = “On input $\langle M \rangle$, where $M = (Q, \Sigma, \delta, q_0, A)$ is a DFA:

1. Remove all states of M that are unreachable from the start state.
2. Construct the following undirected graph G whose nodes are the states of M.
3. Place an edge in G connecting every accept state with every nonaccept state. Add additional edges as follows.
4. Repeat until no new edges are added to $G:
5. For every pair of distinct states \(q \) and \(r \) of \(M \) and every \(a \in \Sigma \):
6. Add the edge \((q, r)\) to \(G \) if \((\delta(q, a), \delta(r, a))\) is an edge of \(G \).
7. For each state \(q \), let \([q]\) be the collection of states

\[
[q] = \{ r \in Q \mid \text{no edge joins } q \text{ and } r \text{ in } G \}.
\]

8. Form a new DFA \(M' = (Q', \Sigma, \delta', q_0', A') \) where
 - \(Q' = \{ [q] \mid q \in Q \} \), (if \([q] = [r]\), only one of them is in \(Q' \)),
 - \(\delta'([q], a) = [\delta(q, a)] \), for every \(q \in Q \) and \(a \in \Sigma \),
 - \(q_0' = [q_0] \), and
 - \(A' = \{ [q] \mid q \in A \} \).
9. Output \(\langle M' \rangle \).

A. Show that \(M \) and \(M' \) are equivalent.

B. Show that \(M' \) is minimal—that is, no DFA with fewer states recognizes the same language. You may use the Myhill-Nerode Theorem.

C. Show that \textsc{Minimize} operates in polynomial time.

Answer:

A. Firstly, if a string \(x = x_1 x_2 \cdots x_t \) of length \(t \) is accepted by \(M \), there exists a sequence of states, \(q_{i_0}, q_{i_1}, \ldots, q_{i_t} \) such that \(q_{i_0} = q_0, q_{i_j} = \delta(q_{i_{j-1}}, x_j) \), and \(q_{i_t} \in F \). This implies that \(x \) can be accepted by \(M' \) based on the sequence of states \([q_{i_0}], [q_{i_1}], \ldots, [q_{i_t}] \) such that \([q_{i_0}] = [q_0], [q_{i_j}] = \delta'([q_{i_{j-1}}], x_j) \), and \([q_{i_t}] \in F' \). Thus, \(L(M) \subseteq L(M') \).

Secondly, if a string \(y = y_1 y_2 \cdots y_t \) of length \(t \) is accepted by \(M' \), let \([q_{i_0}], [q_{i_1}], \ldots, [q_{i_t}] \) be the set of states such that \([q_{i_0}] = [q_0], [q_{i_j}] = \delta'([q_{i_{j-1}}], x_j) \), and \([q_{i_t}] \in F' \). By induction, we can show that when \(y \) is input to \(M \), the corresponding sequence of states visited by \(M \), say \(r_0, r_1, r_2, \ldots, r_t \), will satisfy \(r_0 = q_0 \), and \(r_j \in [q_{i_j}] \) for all \(j \). Now, as \([q_{i_t}] \in F' \), we know that \([q_{i_t}] \subseteq F \) (why?). Thus, \(r_t \in F \), so that \(L(M') \subseteq L(M) \).

In conclusion, \(L(M) = L(M') \), so that \(M \) and \(M' \) are equivalent.

B. Let \(\delta(q_0, x) \) denote the state of \(M \) after reading \(x \) when \(M \) starts from \(q_0 \). By induction, we can show that for two distinct states \(q \) and \(r \) in the undirected graph \(G \), \(q \) and \(r \) are connected by an edge if and only if there exists strings \(x \) and \(y \) such that \(\delta(q_0, x) = q, \delta(q_0, y) = r \), and \(x, y \) are indistinguishable by \(L(M) \).

Based on the above result, \([q]\) will store the all states \(q' \) such that for all \(x, y \) with \(\delta(q_0, x) = q \) and \(\delta(q_0, y) = q' \), \(x \) and \(y \) are indistinguishable. Also, for any \(q' \in [q] \), we observe that \([q'] = [q]\) (why?).

In other words, the distinct set of states \([q]\) in \(Q' \) forms a partition of \(Q \). By picking one string \(x \) with \(\delta(q_0, x) \in q \) for each distinct \([q]\), the resulting \(|Q'|\) strings are pairwise distinguishable by \(L(M) \) (why?). By Myhill-Nerode theorem, any DFA recognizing \(L(M) \) must have at least \(|Q'|\) states.

As \(M' \) has \(|Q'|\) states and \(L(M) = L(M') \), \(M' \) is a minimal.
C. Let $|Q| = n$. Step 1 takes at most $O(n^3 + n^2|\Sigma|)$ time, by using the brute force connectivity algorithm. For Step 3, it takes $O(n^2)$ time. For Step 4, it repeats Steps 5 and 6 for at most $O(n^2)$ times, each repetition takes at most $O(n^2|\Sigma|)$ time. For Step 7, it is done in $O(n^2)$ time. For Step 8, we first check if $[q] = [r]$ for each pair of q and r, which requires $O(n^3)$ time; this naturally gives a partition of Q’s states, and the partition can be stored in a table; then, we construct the final DFA M', which takes an additional $O(n^2|\Sigma|)$ time.

In total, the time required for constructing M' is $O(n^4|\Sigma|)$, which is polynomial in the length of the input $\langle M \rangle$.