CS5371 THEORY OF COMPUTATION

Homework 5 (Solution)

1. Let S be a set and let C be a collection of subsets of S. A set S’, with S’ C S, is a called
a hitting set for C' if every subset in C' contains at least an element in S’. Let HITSET be
the language

{(C,k) | C has a hitting set of size k}.

Prove that HITSET is NP-complete.

Answer: It is easy to check that HITSET is in NP (why?). To see why HITSET is NP-
complete, we observe that we can reduce VERTEX-COVER to HITSET: Given a graph
G=(V,E), weset S =V and C = E, then immediately we have G has a vertex cover of
size k if and only if C' has a hitting set of size k. As VERTEX-COVER is NP-complete,
the reduction (obviously) takes polynomial time, and HITSET is in NP, we have proved
that HITSET is NP-complete.

2. Let U be the language
{{M,z,#") | TM M accepts input x within ¢ steps on at least one branch}.

Show that U is NP-complete. (For this problem, you are required to prove it without using
reduction from any known NP-complete problems.)

Answer: To see why U is in NP, we observe that there is an NTM N that recognizes U in
polynomial time, such that for any (M, z,#') € U, N guesses the ¢ choices of the branch
for M to accept x within ¢ steps.

To see why U is NP-complete, let A be any language in NP. Since A is in NP, there exists
an NTM N, that accepts any string y in A within |y|* steps, for some k. Then, we can
reduce A to U as follows: Given any input string y, we set M = Ny, x = y and t = k;
immediately, we have y in A if and only if (M, x, #') in U. As the reduction is polynomial
time, we have shown that any language in NP is polynomial time reducible to U. As U is
in NP, so by definition U is NP-complete.

Further Question: Will the above proof still be okay when U is replaced by the following
language U’:

{{(M,z,t) | TM M accepts input x within ¢ steps on at least one branch}.

3. We say a language A is in coNP if its complement, A, is in NP. We call a regular expression
star-free if it does not contain any star operations. Let EQg¢p pry be the language

{(R,S) | R, S are equivalent star-free regular expressions}.

Show that EQgp ppx is in coNP. Why does your argument fail for general regular expres-
sions?

Answer: To show that EQgr prx is in NP, we observe that a string x is in EQgp ppy if
and only if it is one of the following forms:

(a) x does not represent a valid encoding of two regular expressions;

1

(b) « is of the correct form (R, S), but either R, or S, or both are not star-free;
(¢) x is of the correct form (R, S), R and S are both star-free, but L(R) # L(S5).

If x is in the first and the second form, x can be accepted by a DTM easily in polynomial
time. If = is in the third form, there exists a string y that is in exactly one of the L(R) or
L(S). As R and S are star-free, the length of y must be polynomial in the size of |R| + |S]
(why?). Thus, there is an NTM N that guesses such a string y in polynomial time whenever
x is of the third form (but will never find such a string y when L(R) = L(S)). Thus, there
exists an NTM that recognizes EQgr ppx in polynomial time. This completes the proof.

. (Choose either Q4 or Q5.) Show that the following problem is NP-complete. You are
given a set of states Q = {qo, ¢1, - - ., q¢} and a collection of pairs IT = {(s1,71), ..., (Sk, %) }
where the s; are distinct strings over ¥ = {0, 1}, and the r; are (not necessarily distinct)
members of (). Determine whether a DFA M = (Q, %, §, qo, F') exists where 0(qo, $;) = 73
for each i. Here, the notation d(q, s) stands for the state that M enters after reading s,
starting at state ¢. (Note that F' is irrelevant here).

Answer: (sketch) To show that the above problem is in NP, we observe that an NTM
can guess the correct DFA satisfying the constraints () and II in polynomial time if and
only if such a DFA exists.

To show that the above problem is NP-complete, we reduce the NP-complete problem
3SAT to it: Given a 3cnf-formula F, say, F' = /\f:1 C; and C; = (x; Vy; V z;), we construct
the following constraints) and II:

(a) @ ={ar.qr @1, 2};
(b
(

)
) Create a pair (¢, qr) in II to enforce gr to be the start state;
(¢) For each variable x in F'| create the following two pairs in II: (27, ¢7) and (Zx, g7);
)
)

d
(e

For each clause C; in F, create a pair (z;y;2;, qr) in II;

For each variable z in F, create the following two pairs in I1: (z#,,¢1) and (T#4, ¢2),
where these two pairs enforce that after reading x and after reading , DFA must be
in different states;

(f) Pick any variable x in F. Then, for each variable y, create the following three pairs
in II: (ZL’fy, QT)v ($#xy7 q1)7 (E#xya Q2)

We claim that F is satisfiable if and only if there exists a DFA satisfying the constraints
Q) and C. (The proof of the claim is left as a further exercise.) As the reduction takes
polynomial time, this completes the proof.

. (Choose either Q4 or Q5.) Consider the algorithm MINIMIZE, which takes a DFA M as
input and outputs DFA M’.

MINIMIZE = “On input (M), where M = (Q, X%, 9, qo, A) is a DFA:
1. Remove all states of M that are unreachable from the start state.
2. Construct the following undirected graph GG whose nodes are the states of M.

3. Place an edge in G connecting every accept state with every nonaccept state. Add
additional edges as follows.

4. Repeat until no new edges are added to G:

5. For every pair of distinct states ¢ and r of M and every a € X:
6. Add the edge (q,7) to G if (6(q,a),d(r,a)) is an edge of G.
7. For each state g, let [¢] be the collection of states

l[q) = {r € Q| no edge joins q and 7 in G}.

8. Form a new DFA M' = (@', 3,0, ¢}, A") where

e Q' ={[q] | q € @}, (if [¢q] = [r], only one of them is in @),
e ¥ ([q],a) =[d(q,a)], for every ¢ € Q and a € X,

b Q6 = [qOL and

o A={lq|qe A}

Ne)

. Output (M").”

A. Show that M and M’ are equivalent.

B. Show that M’ is minimal—that is, no DFA with fewer states recognizes the same
language. You may use the Myhill-Nerode Theorem.

C. Show that MINIMIZFE operates in polynomial time.

Answer:

A. Firstly, if a string © = x1x9 - - - 24 of length ¢ is accepted by M, there exists a sequence
of states, giy, i, - - -, @, such that ¢, = qo, ¢;; = 6(¢i,_,, 7;), and ¢;, € F. This implies

that x can be accepted by M’ based on the the sequence of states [g;,], [¢i,],-- -, [¢:,]
such that [g;,] = [q0], [¢:,] = 0'([@i,_.], z;), and [g;,] € F'. Thus, L(M) C L(M’).
Secondly, if a string y = y1yz - - - ; of length ¢ is accepted by M’, let [¢;.], [gi,], - - -, (@]

be the set of states such that [g;] = [q0], [¢;;] = ¢'([¢i;_,], 7;), and [g;,] € F'. By
induction, we can show that when y is input to M, the corresponding sequence of
states visited by M, say ro,r1,72,...,7¢, Will satisfy ro = qo, and r; € [g;,] for all
j. Now, as [¢,] € F', we know that [¢;,] € F (why?). Thus, r; € F, so that
L(M") C L(M).

In conclusion, L(M) = L(M’), so that M and M’ are equivalent.

B. Let 6(qo, x) denote the state of M after reading x when M starts from ¢y. By induction,
we can show that for two distinct states ¢ and r in the undirected graph G, q and r are
connected by an edge if and only if there exists strings = and y such that §(qo, z) = ¢,
d(qo,y) = r, and x, y are distinguishable by L(M).

Based on the above result, [¢] will store the all states ¢’ such that for all x,y with
d(qo,) = q and 6(qo,y) = ¢/, = and y are indistinguishable. Also, for any ¢’ € [q], we
observe that [¢'] = [¢] (why?).

In other words, the distinct set of states [¢] in @’ forms a partition of Q). By picking
one string x with d(qo, x) € ¢ for each distinct [g], the resulting |Q’| strings are pairwise
distinguishable by L(M) (why?). By Myhill-Nerode theorem, any DFA recognizing
L(M) must have at least |Q)’| states.

As M’ has |Q'| states and L(M) = L(M’), M’ is a minimal.

C. Let |Q| = n. Step 1 takes at most O(n® + n?3|) time, by using the brute force
connectivity algorithm. For Step 3, it takes O(n?) time. For Step 4, it repeats Steps
5 and 6 for at most O(n?) times, each repetition takes at most O(n?X|) time. For
Step 7, it is done in O(n?) time. For Step 8, we first check if [¢] = [r] for each pair of
q and r, which requires O(n?) time; this naturally gives a partition of s states, and
the partition can be stored in a table; then, we construct the final DFA M’, which
takes an additional O(n?|X|) time.

In total, the time required for constructing M’ is O(n?*|3|), which is polynomial in
the length of the input (M).

