CS5371 Theory of Computation

Homework 5 Due: 3:20 pm, January 5, 2007 (before class)

1. Let S be a set and let C be a collection of subsets of S. A set S', with $S' \subseteq S$, is a called a *hitting set* for C if every subset in C contains at least an element in S'. Let *HITSET* be the language

 $\{\langle C, k \rangle \mid C \text{ has a hitting set of size } k\}.$

Prove that *HITSET* is NP-complete.

2. Let U be the language

 $\{\langle M, x, \#^t \rangle \mid \text{TM } M \text{ accepts input } x \text{ within } t \text{ steps on at least one branch} \}.$

Show that U is NP-complete. (For this problem, you are required to prove it without using reduction from any known NP-complete problems.)

3. We say a language A is in coNP if its complement, \overline{A} , is in NP. We call a regular expression *star-free* if it does not contain any star operations. Let EQ_{SF-RFX} be the language

 $\{\langle R, S \rangle \mid R, S \text{ are equivalent star-free regular expressions} \}.$

Show that EQ_{SF_RFX} is in coNP. Why does your argument fail for general regular expressions?

- 4. (Choose either Q4 or Q5.) Show that the following problem is NP-complete. You are given a set of states $Q = \{q_0, q_1, \ldots, q_\ell\}$ and a collection of pairs $\{(s_1, r_1), \ldots, (s_k, r_k)\}$ where the s_i are distinct strings over $\Sigma = \{0, 1\}$, and the r_i are (not necessarily distinct) members of Q. Determine whether a DFA $M = (Q, \Sigma, \delta, q_0, F)$ exists where $\delta(q_0, s_i) = r_i$ for each *i*. Here, the notation $\delta(q, s)$ stands for the state that M enters after reading s, starting at state q. (Note that F is irrelevant here).
- 5. (Choose either Q4 or Q5.) Consider the algorithm MINIMIZE, which takes a DFA M as input and outputs DFA M'.

MINIMIZE = "On input $\langle M \rangle$, where $M = (Q, \Sigma, \delta, q_0, A)$ is a DFA:

- 1. Remove all states of M that are unreachable from the start state.
- 2. Construct the following undirected graph G whose nodes are the states of M.
- 3. Place an edge in G connecting every accept state with every nonaccept state. Add additional edges as follows.
- 4. Repeat until no new edges are added to G:
- 5. For every pair of distinct states q and r of M and every $a \in \Sigma$:
- 6. Add the edge (q, r) to G if $(\delta(q, a), \delta(r, a))$ is an edge of G.
- 7. For each state q, let [q] be the collection of states

 $[q] = \{r \in Q \mid \text{ no edge joins } q \text{ and } r \text{ in } G\}.$

- 8. Form a new DFA $M' = (Q', \Sigma, \delta', q_0', A')$ where
 - $Q' = \{[q] | q \in Q\}$, (if [q] = [r], only one of them is in Q'),
 - $\delta'([q], a) = [\delta(q, a)]$, for every $q \in Q$ and $a \in \Sigma$,
 - $q'_0 = [q_0]$, and
 - $A' = \{[q] | q \in A\}.$
- 9. Output $\langle M' \rangle$."
- A. Show that M and M' are equivalent.
- B. Show that M' is minimal—that is, no DFA with fewer states recognizes the same language. You may use the Myhill-Nerode Theorem.
- C. Show that *MINIMIZE* operates in polynomial time.