
CS5371 Theory of Computation

Homework 4 (Solution)

1. Let Γ = {0, 1,t} be the tape alphabet of all TMs in this problem. Define the busy beaver
function BB : N→ N as follows. For each value of k, consider all k-state TMs that halt
when started with a blank tape. Let BB(k) be the maximum number of 1s that remain
on the tape among all of these machines. Show that BB is not a computable function.

Answer: Suppose on the contrary that BB is computable. Then there exists a TM F
that computes BB. Without loss of generality, F be a TM that, on input 1n, and halts
with 1BB(n) on the tape for all n. Now, we construct a TM M that halts when started with
a blank tape based on F : In Step 1, M writes n 1s on the tape. In Step 2, M doubles the
1s in the tape. In Step 3, M simulates F (on the input string 12n. Thus, M will always
halt with BB(2n) 1s when it is started with a blank tape.

To implement M , we require at most n states to perform Step 1, and a total of c states to
perform Steps 2 and 3, for some constant c. By definition, we have BB(n+ c) = maximum
number of 1s that a (n + c)-state TMs will halt with, which is at least the number of 1s
that M halts with. This implies BB(n + c) ≥ BB(2n) holds for all n. However, it is easy
to check that BB(k) is a strictly increasing function (why?). Thus, BB(n + c) < BB(2n)
when n > c, and we arrive at a contradiction.

In conclusion, BB(k) is not a computable function.

2. Let AMBIGCFG = {〈G〉 | G is an ambiguous CFG}. Show that AMBIGCFG is undecid-
able. (Hint: Use a reduction from PCP. Given an instance

P =

{[
t1
b1

]
,

[
t2
b2

]
, . . . ,

[
tk
bk

]}
,

of the Post Correspondence Problem, construct a CFG G with the rules

S → T | B
T → t1Ta1 | · · · | tkTak | t1a1 | · · · | tkak

B → b1Ba1 | · · · | bkBak | b1a1 | · · · | bkak,

where a1, . . . , ak are new terminal symbols. Prove that this reduction work.)

Answer: (1) If P has a match with ti1ti2 · · · ti` = bi1bi2 · · · bi` , then we observe that the
string ti1ti2 · · · ti`ai` · · · ai2ai1 has at least two derivations, one from T and one from B. (2)
If the CFG G is ambiguous, some string s has multiple derivations. As s is generated from
G, it can be written as waj1aj2 · · · ajm for some w that does not contain symbols from ai’s.
By checking the grammar G, we observe that the derivation of T and the derivation of B
can each generate at most one strings of the same form as s. In particular, the multiple
derivations (actually, 2 derivations) of s must be as follows:

S ⇒ T
∗⇒ s = tjmtjm−1 · · · tj1aj1aj2 · · · ajm

S ⇒ B
∗⇒ s = bjmbjm−1 · · · bj1aj1aj2 · · · ajm

1

Thus, tjmtjm−1 · · · tj1 = bjmbjm−1 · · · bj1 and we can get a match of P .

Combining (1) and (2), we show that P has a match if and only if G is ambiguous. Thus,
the reduction from PCP to AMBIGCFG works, and AMBIGCFG is undecidable.

3. Define a two-headed finite automaton(2DFA) to be a deterministic finite automaton
that has two read-only, bidirectional heads that start at the left-hand end of the input tape
and can be independently controlled to move in either direction. The tape of a 2DFA is
finite and is just large enough to contain the input plus two additional blank tape cells,
one on the left-hand end and one on the right-hand end, that serve as delimiters. A 2DFA
accepts its input by entering a special accept state. For example, a 2DFA can recognize
the language {anbncn | n ≥ 0}.

(a) Let A2DFA = {〈M, x〉 | M is a 2DFA and M accepts x}. Show that A2DFA is decid-
able.

(b) Let E2DFA = {〈M〉 | M is a 2DFA and L(M) = {}}. Show that E2DFA is not decid-
able.

Answer:

(a) Let M be a 2DFA M and let s be the number of states in M . On input string x, there
are at most s(|x|+ 2)2 distinct configurations for M . Thus, to decide if M accepts x,
we can simulate M for at most s(|x|+ 2)2 steps and get the answer (why?).

(b) Suppose on the contrary that E2DFA is decidable. Let D be a DTM that decides
E2DFA. We now construct a TM E based on D for deciding ETM as follows:

M = “On input 〈M〉,
1. Construct a 2DFA M ′ which recognizes the accepting computation history of M .

(How to can a 2DFA M ′ perform this task?)1

2. Run D on M ′. If D accepts, accept. Otherwise, reject.”

Since ETM is undecidable, contradiction occurs. In conclusion, E2DFA is thus unde-
cidable.

4. Let J = {w | either w = 0x for some x ∈ ATM , or w = 1y for some y /∈ ATM}. Show that
neither J nor the complement of J is Turing-recognizable.

Answer: Let A be the language {〈M, x〉 | M is a TM and M does not accept x}. It is
easy to check that A is not Turing-recognizable (by reduction from ATM). We first show
how to reduce A to J . This is done by the reduction function f(w) = 1w, so that w is
in A if and only if f(w) is in J . Obviously, the function f is computable. As A is not
Turing-recognizable, J is not Turing-recognizable.

1Formally, M ′ shall accept an input string c1#c2# · · ·#ck if it corresponds to an accepting computation
history of M on some input string. To check it, M ′ checks if c1 is a valid start configuration, checks if ck is a
valid accepting configuration, and checks if each ci follows legally from ci−1. The first two steps can be done
easily using one tape head.

The difficulty lies in the last step. When we want to check if ci follows legally from ci−1, we need to compare
the symbols in these two configurations sequentially. However, we cannot check the jth symbol in ci−1, then
compare with the jth symbol in ci, and get back to the (j + 1)th symbol in ci−1 for the next comparison, since
the tape is read-only so that we cannot put ‘markers’ on the tape. Fortunately, this problem can be solved if we
are using two tape heads, so that the tape head are always on the symbols that we want to compare, and can
advance together. In other words, we can construct a 2DFA to recognize accepting computation history for any
TM M .

2

We next show how to reduce reduce ATM to J . This is done by the reduction function
g(w) = 0w, so that w is in ATM if and only if g(w) is in J . Again, the function g is
computable. Since ATM is not Turing-recognizable, J is not Turing-recognizable.

5. Rice’s theorem. Let P be any nontrivial property of the language of a Turing machine.
Prove that the problem of determining whether a given Turing machine’s language has
property P is undecidable.

In more formal terms, let P be a language consisting of Turing machine descriptions where
P fulfills two conditions. First, P is nontrivial—it contains some, but not all, TM descrip-
tions. Second, P is a property of the TM’s language—whenever L(M1) = L(M2), we have
〈M1〉 ∈ P if and only if 〈M2〉 ∈ P . Here, M1 and M2 are any TMs. Prove that P is an
undecidable language.

Answer: Assume on the contrary that P is a decidable language satisfying the properties
and let RP be a TM that decides P . We show how to decide ATM using RP by constructing
TM S. First, let T∅ be a TM that always reject, so L(T∅) = ∅. We may assume that
〈T∅〉 /∈ P without loss of generality, because we could proceed with P instead of P if
〈T∅〉 ∈ P . Because P is non-trivial, there exists a TM T with 〈T 〉 ∈ P . Then, we can
construct S based on T and RP as follows:

S = “On input 〈M, w〉:
1. Use M and w to construct the following TM Mw.

Mw = “On input x:

1. Simulate M on w. If it halts and rejects, reject.

2. Simulate T on x. If T accepts x, accept.”

2. Use TM RP to determine if 〈Mw〉 ∈ P . If YES, accept. Else, reject.”

Note that TM Mw has the property that (1) if M accepts w, L(Mw) = L(T), and (2) if
M does not accept w, L(Mw) = ∅ = L(T∅). In other words, 〈Mw〉 ∈ P if and only if M
accepts w.

Since the construction of Mw from T , M , and w takes finite steps, the TM S is a decider
for ATM . This creates a contradiction since ATM is a undecidable language. In conclusion,
P is undecidable.

3

