
CS5371 Theory of Computation

Homework 1 (Solution)

1. Assume that the alphabet is {0, 1}. Give the state diagram of a DFA that recognizes the
language {w | w ends with 00}.
Answer: The key idea is to design three states q0, q1, q2, where q0 specifies the input string
does not end with 0, q1 specifies the input string ends with exactly one 0, and q2 specifies
the input string ends with at least two 0s.

2. Assume that the alphabet is {0, 1}. Give the state diagram of a DFA that recognizes the
language {w | w contains an equal number of occurrences of the substrings 01 and 01}.
Answer: The key observation is that the number of occurrences of the substrings 01 and
01 can differ by at most 1. In the figure below, the states q2 and q4 refer to the cases when
the difference is exactly 1 (q2 when 01 has one more occurrences, q4 when 10 has one more
occurrences).

3. Prove that the language {wp | p is prime} is not regular. (You may assume that the
number of primes is infinite.)

Answer: Suppose on the contrary that this language L is regular. Let p be its pumping
length and t be a prime greater than p. (Note that t exists since the number of primes
is infinite.) Then, wt ∈ L, and by the pumping lemma, we can write wt as wt = xyz for
some x, y, z, such that |y| > 0, |xy| ≤ p, and for each i ≥ 0, xyiz ∈ L.

By setting i = t + 1, the pumping lemma implies that xyt+1z is in L. On the other hand,
xyt+1z = wt+t|y|, which implies that xyt+1z /∈ L, as t + t|y| = t(1 + |y|) is not a prime.
Thus, a contradiction occurs, so that L is not regular.

4. Consider the language F =
{
aibjck | i, j, k ≥ 0 and if i = 1 then j = k

}
.

(a) Show that F is not regular.

1

(b) Show that F acts like a regular language in the pumping lemma. In other words,
give a pumping length p and demonstrate that F satisfies the three conditions of the
pumping lemma for this value of p.

(c) Explain why parts (a) and (b) do not contradict the pumping lemma.

Answer:

(a) Suppose on the contrary that F is regular. Let L = {x | x begins with one a}. Obvi-
ously, L is regular. Recall that in the tutorial, we have proved that the intersection
of two regular languages is regular, so the language L′ = F ∩ L is regular.

Let p be the pumping length of L′. Note that L′ = {abncn | n ≥ 0}, so that abpcp is
in L′. By pumping lemma, abpcp can be written as xyz such that |y| > 0, |xy| ≤ p,
and for each i ≥ 0, xyiz ∈ L′. However, (i) if y includes a, the string xyyz has at
least two a’s; (ii) else, if y includes both b and c, the string xyyz has at least two
substrings bc; (iii) else, y includes only b or only c, and so the number of b and the
number of c in xyyz will not be equal. In all the above three cases, xyyz cannot be
in L′, so that a contradiction occurs (why?). Thus, F is not regular.

(b) Let p′ be the pumping length. Let p = max{p′, 3} and let s be a string in F with
|s| > p. We divide the discussion into two cases such that Case 1 corresponds to those
string s that has exactly two ‘a’s (i.e., when i = 2), and Case 2 corresponds to the
other kinds of s (i.e., when i 6= 2). For Case 1, we can divide s into xyz, such that
x = ε, y = aa, and z is the remaining string. For Case 2, we can divide s into xyz,
such that x = ε, y is the first character, and z is the remainder string. We can easily
verify that in both cases, |y| > 0, |xy| ≤ p, and for all i ≥ 0, xyiz ∈ F .

(c) All regular language satisfies the pumping lemma, but the converse is not true. That
is, if a language satisfies the pumping lemma, the language may not be regular.

5. For languages A and B, let the perfect shuffle of A and B be the language

{w | w = a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ} .

Show that the class of regular languages is closed under perfect shuffle.

Answer: Let DA = (QA, Σ, δA, qA, FA) and DB = (QB, Σ, δB, qB, FB) be two DFAs that
recognize A and B, respectively. Here, we shall construct a DFA D = (Q, Σ, δ, q, F) that
recognizes the perfect shuffle of A and B.

The key idea is to design D to alternately switch from running DA and running DB after
each character is read. Therefore, at any time, D needs to keep track of (i) the current
states of DA and DB and (ii) whether the next character of the input string should be
matched in DA or in DB. Then, when a character is read, depending on which DFA should
match the character, D makes a move in the corresponding DFA accordingly. After the
whole string is processed, if both DFAs are in the accept states, the input string is accepted;
otherwise, the input string is rejected.

Formally, the DFA D can be defined as follows:

(a) Q = QA × QB × {A,B}, which keeps track of all possible current states of DA and
DB, and which DFA to match.

(b) q = (qA, qB, A), which states that D starts with DA in qA, DB in qB, and the next
character read should be in DA.

2

(c) F = FA × FB × {A}, which states that D accepts the string if both DA and DB are
in accept states, and the next character read should be in DA (i.e., last character was
read in DB).

(d) δ is as follows:

i. δ((x, y, A), a) = (δA(x, a), y, B), which states that if current state of DA is x, the
current state of DB is y, and the next character read is in DA, then when a is
read as the next character, we should change the current state of A to δA(x, a),
while the current state of B is not changed, and the next character read will be
in DB.

ii. Similarly, δ((x, y, B), b) = (x, δB(y, b), A).

6. For languages A and B, let the shuffle of A and B be the language

{w | w = a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ∗} .

Show that the class of regular languages is closed under shuffle.

Answer: Let DA = (QA, Σ, δA, qA, FA) and DB = (QB, Σ, δB, qB, FB) be two DFAs that
recognize A and B, respectively. Similar to the previous question, we shall prove by
construction. However, the key difference is that D may now switch from running DA

and running DB after each character is read. To allow this flexibility and simplify the
construction, we design an NFA N = (Q, Σ, δ, q, F) that recognizes the shuffle of A and B
instead of directly designing a DFA.

At any time, N needs to keep track of the current states of DA and DB. Then, when a
character is read, N may make a move in DA or DB accordingly. After the whole string is
processed, if both DFAs are in the accept states, the input string is accepted; otherwise,
the input string is rejected. In addition, N should also accept the empty string.

Formally, the NFA N can be defined as follows:

(a) Q = (QA × QB) ∪ {q0}, where QA × QB keeps track of all possible current states of
DA and DB, and q0 denotes the state when nothing is read.

(b) q = q0.

(c) F = (FA×FB)∪{q0}, which states that N accepts the string if both DA and DB are
in accept states, or N accepts the empty string.

(d) δ is as follows:

i. δ(q0, ε) = (qA, qB), which states that at the start state q0, N can make DA in qA

and DB in qB without reading anything.

ii. (δA(x, a), y) ∈ δ((x, y), a), which states that if current state of DA is x, the current
state of DB is y, then when a is read as the next character, we can change the
current state of A to δA(x, a), while the current state of B is not changed.

iii. Similarly, (x, δB(y, a)) ∈ δ((x, y), a).

7. (Myhill-Nerode Theorem.) Let L be any language.

Definition 1. Let x and y be strings. We say that x and y are distinguishable by L if some
string z exists whereby exactly one of the strings xz and yz is a member of L; otherwise,
for every string z, we have xz ∈ L whenever yz ∈ L.

3

Definition 2. Let X be a set of strings. We say X is pairwise distinguishable by L if
every two distinct strings in X are distinguishable by L.

Definition 3. Define the index of L to be the maximum number of elements in any set of
strings that is pairwise distinguishable by L. The index of L may be finite or infinite.

(a) Show that if L is recognized by a DFA with k states, L has index at most k.

(b) Show that, if the index of L is a finite number k, then it is recognized by a DFA with
k states.

(c) Conclude that L is regular if and only if it has finite index. Moreover, its index is the
size of the smallest DFA recognizing it.

Answer: The following answers are extracted from the textbook.

(a) Let M be the DFA with k states recognizing L. Suppose on the contrary that L has
index greater than k. That means, some set X with at least k + 1 strings is pairwise
distinguishable by L. By pigeonhole’s principle, we can find two distinct strings x
and y from X, such that the state of M after reading x as input is the same as the
state of M after reading y as input. Therefore, both xz and yz are in L or neither
are in L. This implies x and y are not distinguishable by L. Contradiction occurs, so
that L has index at most k.

(b) Let X = {x1, x2, . . . , xk} be pairwise distinguishable by L. We construct DFA M =
(Q, Σ, δ, q0, F) with k states recognizing L as follows. Let Q = {q1, q2, . . . , qk}, and
define δ(qi, a) to be qj, if xia and xj are not distinguishable. Let F = {qi | xi ∈ L}.
Let the start state q0 be the (unique) state such that xi and and the empty string ε
are not distinguishable by L.

We can show that if a string s and xj are not distinguishable by L, the state of M
after reading s as input will be qj (how to show?). Then, by the definition of F , M
accepts s if and only if s is in L (why?). Thus, M recognizes L.

(c) Suppose that L is regular and let k be the number of states in a DFA recognizing L.
Then from part (a), L has index at most k. On the other hand, if L has index k,
then from part (b) we can construct a DFA with k states recognizing L. Thus, L is
regular if and only if it has finite index.

To see why the index k is the size of the smallest DFA recognizing it, suppose on the
contrary that it is not true. Then, from part (a) we would conclude that L has index
fewer than k, which contradicts with the fact that L has index equal to k.

8. (Bonus Question.) If A is a language, let A 1
2

be the set of all first halves of strings in A,
so that

A 1
2

= {x | for some y, |x| = |y| and xy ∈ A} .

Show that if A is regular, then so is A 1
2
.

Answer: Let D = (QA, Σ, δA, qA, FA) be a DFA recognizing A. We shall construct an NFA
N that recognizes A 1

2
. The idea is that, when we have processed the ith input characters, N

is able to keep track both the state of D when processed the string so far, and the possible
states which can reach some accept state of D in i steps. Then, a string is accepted by N
when the current state is in one of these possible states.

Formally, we let N = (Q, Σ, δ, q, F) such that

4

(a) Q = (QA × QA) ∪ {q0}, where QA × QA keeps track of the current state of D, and
the state that can reach an accept state of D in i steps, where i is the length of the
input string processed so far. In addition, we create a state q0, which denotes the
state when nothing is read.

(b) q = q0.

(c) F = {(x, x) | x ∈ QA}, which states that a string is accepted when the current state
of D is at x, and x is i steps from some accept state of D, where i is the length of the
input string processed so far.

(d) δ is as follows:

i. (qA, x) ∈ δ(q0, ε) for x ∈ FA, which states that without reading anything, we
make D to start at qA, and keep track that x ∈ F is 0 steps from some accept
state of D.

ii. (δA(x, a), z) ∈ δ((x, y), a) for any z such that there exists some c ∈ Σ with
δA(z, c) = y. This states that when D advances one step from state x to δA(x, a),
we update the state y to some state z which is one more step further from the
accept state of D.

5

