CS4311 Design and Analysis of Algorithms

Tutorial: Hirschberg's Trick for LCS

Space for Finding LCS

- In the lecture, we see that LCS problem can be solved using O(mn) space
- And if we only need the length of LCS
 we can do so by only keeping current row
 and previous row → reduce space to O(n)
- Note: We can also fill L column by column
 Space usage: O(min { m,n })

Reducing Space Usage

Question: How about getting the LC5? Can we do so with O(n) space?

Solution I:

- Use O(mn) time to find the last row
- Use O(mn) time to find the 2nd last row
- •
- Use O(mn) time to find the first row
- \rightarrow Total time: $O(m^2n)$

Let S_1 and S_2 denote the first half and the second half of S, respectively

(S_1 and S_2 have equal length)

Consider X, which is the LCS of S and T.

Let X' and X" denote the portion of X which comes from S_1 and S_2

(X' or X" may be empty, and may be of unequal length)

Example

```
S = DIRTYROOM
T = DORMITORY
X = DITR
```

$$S_1 = DIRT$$
, $S_2 = YROOM$
 $X' = DIT$, $X'' = R$

Observation:

If X' and X" come from $T_{1,r}$ and $T_{r+1,n}$ for some r, then

- X' is an LCS of S_1 and $T_{1,r}$
- X" is an LCS of S_2 and $T_{r+1,n}$

Corollary: The reverse of X" is LCS of the reverse of S_2 and reverse of $T_{r+1,n}$

```
Let len_{i,j} = length of the LCS of S_{1,i} and T_{1,j}

Let rev_{i,j} = length of the LCS of S_{i,m} and T_{j,n}

= length of the LCS of reverse of S_{i,m} and reverse of T_{j,n}
```

```
Lemma: len_{m,n} = max_r \{ len_{m/2,r} + rev_{m/2+1,r+1} \}
And, if r = r^* achieves the above max,
```

- X' is an LCS of S_1 and T_{1,r^*}
- X" is an LCS of S_2 and $T_{r^{*+1},n}$

Based on the previous lemma, we can find r* as follows:

```
Step 1: Fill L for row 1 to row m/2

(from top-left corner)

Step 2: Fill L for row m to row m/2 + 1

(from bottom-right corner)

Step 3: Find r* from rows m/2 and m/2+1
```

	D	0	R	M	I	T	0	R	У	
									-	
D										
I										
R										
T										
У										
R										
0										
0										
M										

		D	0	R	M	I	T	0	R	У	
										-	
D	_									→	
I											
R											
Т											
У											
R											
0											
0											
M											

		D	0	R	M	I	T	0	R	У	
										-	
D	_									-	
I	_									-	
R											
T											
У											
R											
0											
0											
M											

		D	0	R	M	I	T	0	R	У	
										-	
D	_									-	
I										-	
R	_									-	
Т											
У											
R											
0											
0											
M											

		D	0	R	M	I	T	0	R	У	
										→	
D										-	
I										→	
R										→	
Т	0	1	1	2	2	2	3	3	3	3	
У											
R											
0											
0											
M											_

		D	0	R	M	I	T	0	R	У	
	-									→	
D	_									-	
I	_									-	
R	_									-	
T	0	1	1	2	2	2	3	3	3	3	
У											
R											
0											
0											
M		+									

		D	0	R	M	I	T	0	R	У	
										→	
D										-	
I										-	
R										-	
Т	0	1	1	2	2	2	3	3	3	3	
У		2	2	2	1	1	1	1	1	1	0
R		+									_
0		+									_
0		+									_
M		4									_

Example Run: Step 3 (Find r*)

		D	0	R	M	I	T	0	R	У	
D											
I											
R											
T	0	1	1	2	2	2	3	3	3	3	
У		2	2	2	1	1	1	1	1	1	0
R											
0											
0											
M											

- After finding r*, we can recursively find
 - (i) LCS of $S_{1,m/2}$ and $T_{1,r*}$
 - (ii) LCS of $S_{m/2+1,m}$ and $T_{r^{*+1,n}}$
- Total Space: O(n) because space can be reused!
- · Total Time:

$$T(m,n) = T(m/2,r^*) + T(m/2, n-r^*) + \Theta(mn)$$

 \rightarrow By recursion-tree, $T(m,n) = \Theta(mn)$