
1

Introduction to
Theory of Computation

Part IV-A:
Time Complexities

2

About this Part
•What is NP ?

•How to check if a problem is in NP ?

•Cook-Levin Theorem
•Showing one of the most difficult

problem in NP

•Problem Reduction
•Finding other most difficult problems

3

Decision Problems
•When we receive a problem, the first

thing concern is: whether the problem
has a solution or not

•E.g., Peter gives us a map G = (V,E), and
he asks us if there is a path from A
to B whose length is at most 100

•E.g., Your sister gives you a number, say
1111111111111111111 (19 one’s), and
asks you if this number is a prime

4

Decision Problems
•The problems in the previous page is

called decision problems, because the
answer is either YES or NO

•Some decision problems can be solved
efficiently, using time polynomial to the
size of the input
•We use P to denote the set of all these

polynomial-time solvable problems

5

Decision Problems
E.g., For Peter’s problem, there is an

O(V log V + E)-time algorithm that finds
the shortest path from A to B;
 we can first apply this algorithm and

then give the correct answer
 Peter’s problem is in P

•Can you think of other problems in P ?

6

Decision Problems
•Another interesting classification of

decision problems is to see if the problem
can be verified in time polynomial to the
size of the input

•Precisely, for such a decision problem,
whenever it has an answer YES, we can :
1. Ask for a short proof, and

/* short means : polynomial in size of input */

2. Be able to verify the answer is YES

7

Decision Problems
E.g., In Peter’s problem, if there is a path

from A to B with length 100, we can :
1. Ask for the sequence of vertices (with no

repetition) in any path from A to B whose
length 100

2. Check if it is a desired path (in poly-time)

 this problem is polynomial-time verifiable

8

Polynomial-Time Verifiable
More examples:

Given a graph G = (V,E) , does the graph
contain a Hamiltonian path ?

Given a set of numbers, can be divide
them into two groups such that their sum
are the same ?

9

Polynomial-Time Verifiable
•Now, imagine that we have a super-smart

computer, such that for each decision
problem given to it, it has the ability to
guess a short proof (if there is one)

•With the help of this powerful computer,
all polynomial-time verifiable problems can
be solved in polynomial time (how ?)

10

The Class NP

•Because of this, we use NP to denote the
set of polynomial-time verifiable problems
•N stands for non-deterministic

guessing power of our computer
•P stands for polynomial-time solvable

11

P and NP
•We can show that a problem is in P implies

that it is in NP (why?)

•Because if a problem is in P, and if its
answer is YES, then there must be an
algorithm that runs in polynomial-time
to conclude YES …

•Then, the execution steps of this
algorithm can be used as a “short”proof

12

P and NP
•On the other hand, after many people’s

efforts, some problems in NP (e.g., finding a

Hamiltonian path) do not have a polynomial-
time algorithm yet …

•Question: Does that mean these problems
are not in P ??

•The question whether P = NP is still open
Clay Mathematics Institute (CMI) offers US$ 1 million
for anyone who can answer this …

13

P and NP
•So, the current status is :

1. If a problem is in P, then it is in NP
2. If a problem is in NP, it may be in P

•In the early 1970s, Stephen Cook and
Leonid Levin (separately) discovered that:
a problem in NP, called SAT, is very
mysterious …

14

Cook-Levin Theorem
If SAT is in P, then every problems in NP
are also in P
•I.e., if SAT is in P, then P = NP
// Can Cook or Levin claim the money from CMI yet ?

•Intuitively, SAT must be one of the most
difficult problems in NP
•We call SAT an NP-complete problem

(most difficult in NP)

15

Satisfiable Problem
•The SAT problem asks:

•Given a Boolean formula F, such as
F = (x _ y _ : z) ^ (: y _ z) ^ (: x)

is it possible to assign True/False to
each variable, such that the overall
value of F is true ?

Remark: If the answer is YES, F is a satisfiable ,
and so it is how the name SAT is from

16

Other NP-Complete Problems
•The proofs made by Cook and Levin is a

bit complicated, because intuitively they
need to show that no problems in NP can
be more difficult than SAT

•However, since Cook and Levin, many
people show that many other problems in
NP are shown to be NP-complete
•How come many people can think of

complicated proofs suddenly ??

17

Problem Reduction
•How these new problems are shown to be

NP-complete rely on a new technique,
called reduction (problem transformation)

•Basic Idea:
•Suppose we have two problems, A and B
•We know that A is very difficult
•However, we know if we can solve B,

then we can solve A
•What can we conclude ??

18

Problem Reduction
•Now, consider

A = an NP-complete problem (e.g., SAT)
B = another problem in NP

•Suppose that we can show that:
1. we can transform a problem of A into a

problem of B, using polynomial time
2. We can answer A if we can answer B

Then we can conclude B is NP-complete
(Can you see why??)

19

Example
•Let us define two problems as follows :
•The CLIQUE problem:

Given a graph G = (V,E), and an integer k,
does the graph contain a complete
graph with at least k vertices

•The IND-SET problem:
Given a graph G = (V,E), and an integer k,
does the graph contain k vertices such
that there is no edge in between them ?

20

Example
•Questions:

1. Are both problems decision problems ?
2. Are both problems in NP ?

•In fact, CLIQUE is NP-complete

•Can we use reduction to show that
IND-SET is also NP-complete ?

[transform which problem to which??]

