CS4311 Design and Analysis of Algorithms

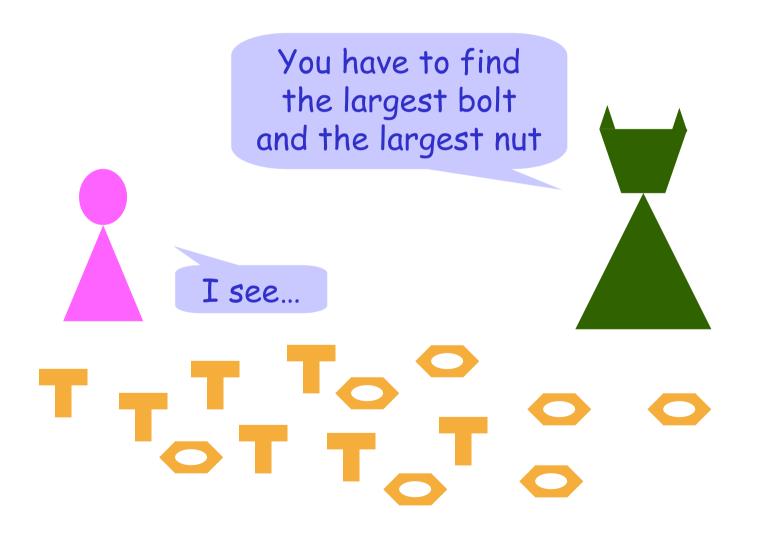
Tutorial: Randomized Selection

1

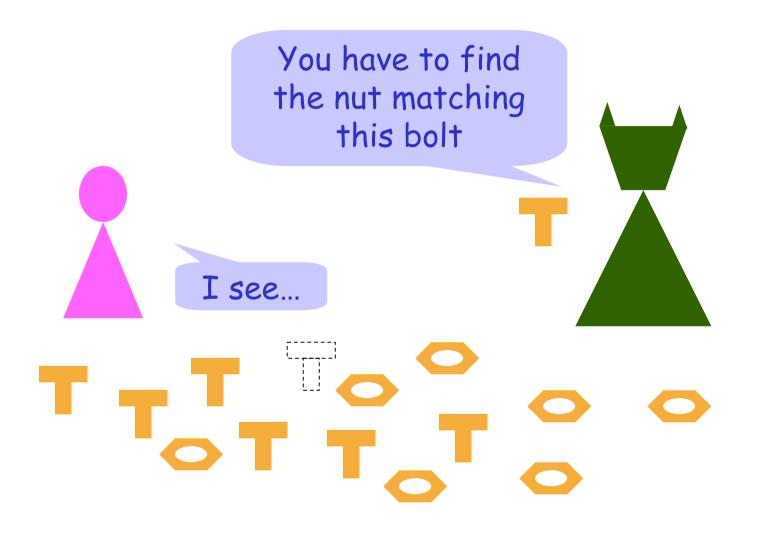
About this tutorial

- Cinderella's New Problem
- Randomized Selection
 - Modification of Quicksort
 - Average-Case

Cinderella's Problem

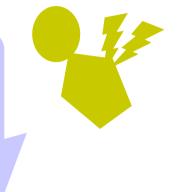


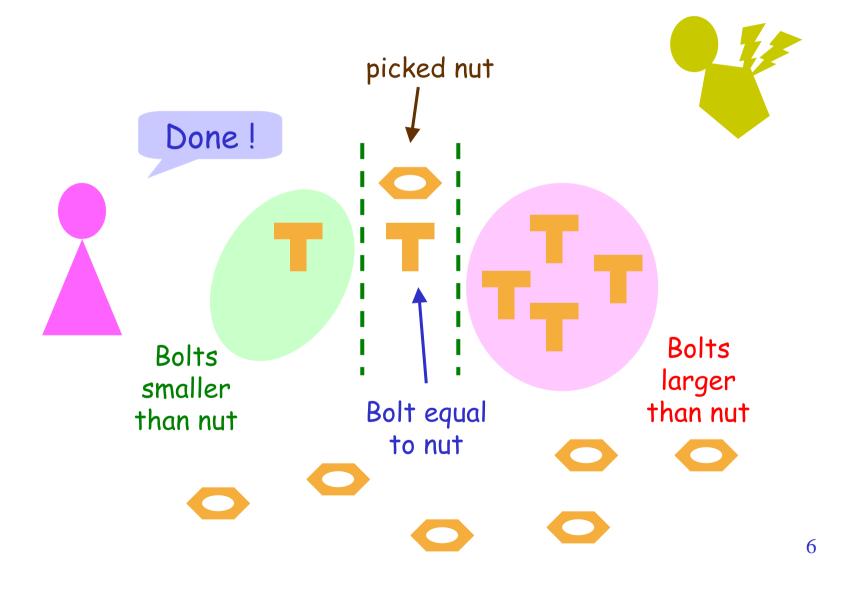
Cinderella's New Problem

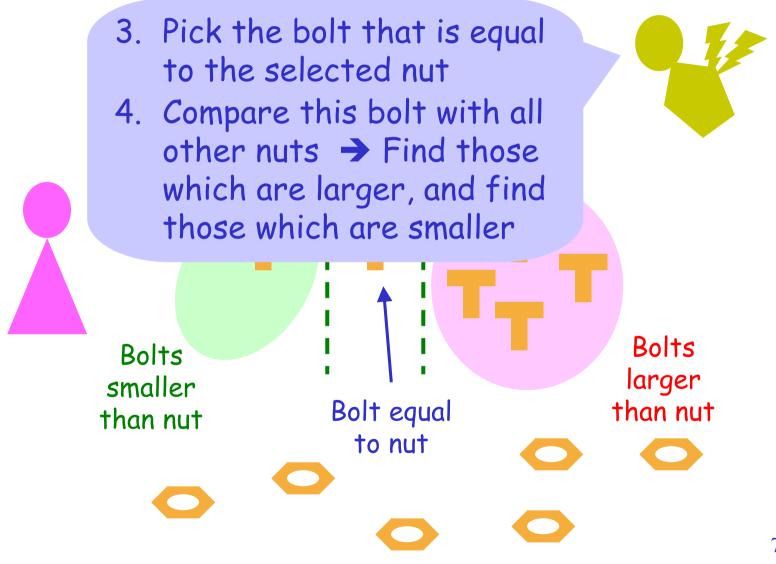


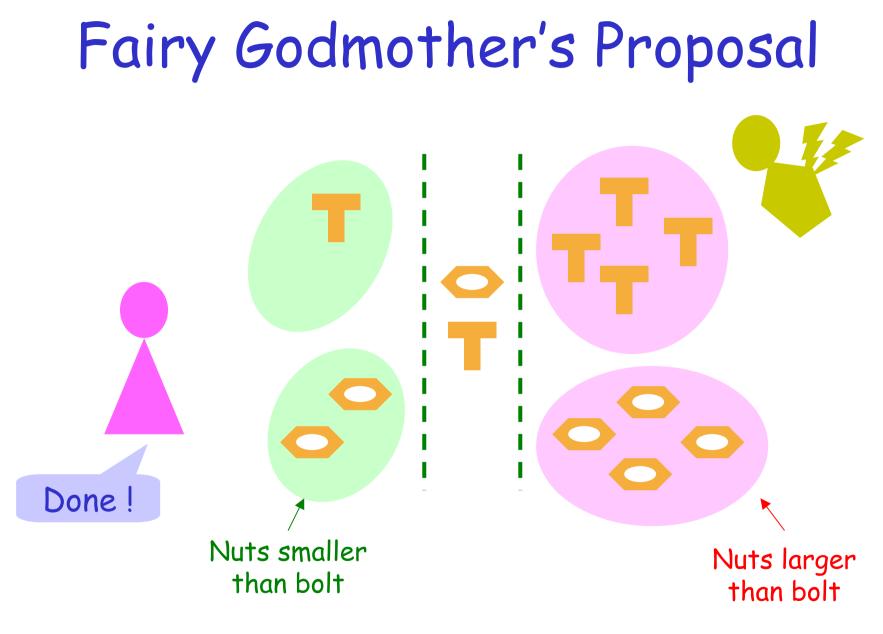
1. Pick one of the nut

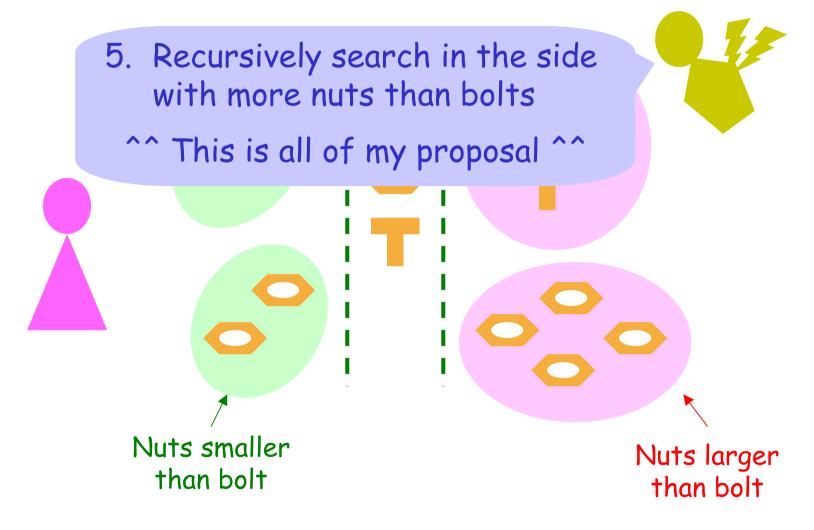
 Compare this nut with all other bolts → Find those which are larger, and find those which are smaller











- Can you see why Fairy Godmother's proposal is a correct algorithm?
- What is the running time?
 - Worst-case: $\Theta(n^2)$ comparisons
 - No better than the brute force approach !!
- Though worst-case runs badly, the average case is good: ⊕(n) comparisons

Review: Quicksort

The Quicksort algorithm works as follows:

Quicksort(A,p,r) /* to sort array A[p..r] */
1. if (p ≥ r) return;
2. q = Partition(A,p,r);
3. Quicksort(A, p, p+q-1);
4. Quicksort(A, p+q+1, r);

To sort A[1..n], we just call Quicksort(A,1,n)

Our Algorithm

The previous algorithm works as follows:

- /* Search in array A[p..r], knowing that the desired value is inside A[p..r] */
- Search(A,p,r)
 - 1. if $(p \ge r)$ return;
 - 2. q = Partition(A,p,r);
 - 3. If target is in A[p..p+q-1]
 Search(A, p, p+q-1);

4. Else Search(A, p+q+1, r);

Average Running Time

- The previous algorithm is called a selection algorithm, which allows us to find out the kth smallest item, for any k
- What is the average running time?

Let T(n) denote average running time on input of size n We shall show that T(n) = O(n)

Average Running Time Inductive Case (assume n is even): $T(n) \leq \sum_{q} (1/n) \max (T(q), T(n-q-1)) + \Theta(n)$ \leq (2/n) $\Sigma_{q=1 \text{ to } n/2}$ T(n-q-1) + $\Theta(n)$ \leq (2/n) c(3n/2-1)(n/2)/2 + Θ (n) $= (3/4)cn + \Theta(n)$ < cn when c is large enough

For odd n, we get $T(n) \leq (3/4)cn + (1/2)c + \Theta(n)$

Average Running Time Conclusion: T(n) = O(n)

 In fact, there is another proof which uses a similar technique as we use in Quicksort Average Running Time Let X = # comparisons in all Partition Then, we have: Running time = $O(n + X) \rightarrow varies on input$ Finding average of X (i.e. #comparisons)

gives average running time

Average # of Comparisons

Recall the notation:

- Let $a_1, a_2, ..., a_n$ denote the set of n numbers initially placed in the array
- Further, assume $a_1 < a_2 < ... < a_n$
- Let X_{ij} = # comparisons between a_i and a_j in all Partition calls

Average # of Comparisons

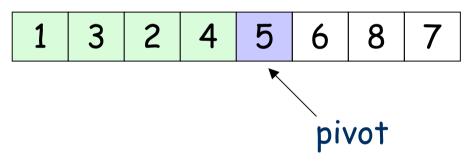
Then, X = # comparisons in all Partition calls = $X_{12} + X_{13} + ... + X_{n-1,n}$

→ Average # comparisons : $E[X] = E[X_{12} + X_{13} + ... + X_{n-1,n}]$ $= E[X_{12}] + E[X_{13}] + ... + E[X_{n-1,n}]$

Later, we shall group $E[X_{ij}]$ terms properly, so that we can easily show E[X] = O(n)

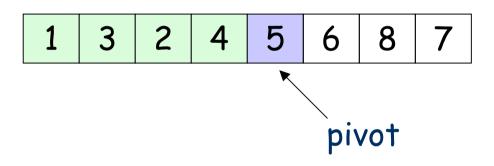
Comparison between a_i and a_j

Question: # times a_i be compared with a_j? Answer: At most once, which happens only if a_i or a_i are chosen as pivot



After that, the pivot is fixed and is never compared with the others

Comparison between a_i and a_j Question: Will a_i always be compared with a_j ? Answer: No. E.g., 4 and 6 are not compared



- In addition, if target is the 6th smallest item, then 2 and 4 are also not compared
- When will a comparison occur ?