
1

CS4311
Design and Analysis of

Algorithms

Tutorial: Randomized Selection

2

•Cinderella’s New Problem

•Randomized Selection
–Modification of Quicksort
–Average-Case

About this tutorial

3

Cinderella’s Problem

I see…

You have to find
the largest bolt

and the largest nut

4

Cinderella’s New Problem

I see…

You have to find
the nut matching

this bolt

5

Fairy Godmother’s Proposal

1. Pick one of the nut
2. Compare this nut with all

other bolts  Find those
which are larger, and find
those which are smaller

6

Fairy Godmother’s Proposal

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

Done !

picked nut

7

picked nut

Fairy Godmother’s Proposal
3. Pick the bolt that is equal

to the selected nut
4. Compare this bolt with all

other nuts  Find those
which are larger, and find
those which are smaller

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

8

Fairy Godmother’s Proposal

Nuts smaller
than bolt

Nuts larger
than bolt

Done !

9

Fairy Godmother’s Proposal

5. Recursively search in the side
with more nuts than bolts

^^ This is all of my proposal ^^

Nuts smaller
than bolt

Nuts larger
than bolt

10

Fairy Godmother’s Proposal

•Can you see why Fairy Godmother’s
proposal is a correct algorithm?

•What is the running time ?

•Worst-case: (n2) comparisons
•No better than the brute force approach !!

•Though worst-case runs badly, the
average case is good: (n) comparisons

11

Review: Quicksort
The Quicksort algorithm works as follows:

Quicksort(A,p,r) /* to sort array A[p..r] */

1. if (p r) return;
2. q = Partition(A,p,r);
3. Quicksort(A, p, p+q-1);
4. Quicksort(A, p+q+1, r);

To sort A[1..n], we just call Quicksort(A,1,n)

12

Our Algorithm
The previous algorithm works as follows:

/* Search in array A[p..r], knowing that the
desired value is inside A[p..r] */

Search(A,p,r)
1. if (p r) return;
2. q = Partition(A,p,r);
3. If target is in A[p..p+q-1]

Search(A, p, p+q-1) ;
4. Else Search(A, p+q+1, r);

13

Average Running Time

•The previous algorithm is called a
selection algorithm, which allows us to
find out the kth smallest item, for any k

•What is the average running time ?

Let T(n) denote average running time on
input of size n
We shall show that T(n) = O(n)

14

Average Running Time
Inductive Case (assume n is even):
T(n) ·q (1/n) max (T(q), T(n-q-1)) + (n)

· (2/n) q=1 to n/2 T(n-q-1) + (n)

· (2/n) c(3n/2-1)(n/2)/2 + (n)

= (3/4)cn + (n)
· cn when c is large enough

For odd n, we get T(n) (3/4)cn + (1/2)c + (n)

15

Average Running Time

Conclusion: T(n) = (n)

•In fact, there is another proof
which uses a similar technique as
we use in Quicksort

16

Average Running Time
Let X = # comparisons in all Partition
Then, we have:

Running time = (n + X) varies on input

Finding average of X (i.e. #comparisons)
gives average running time

17

Average # of Comparisons
Recall the notation:
•Let a1, a2, …, an denote the set of n

numbers initially placed in the array

•Further, assume a1 a2 …an

•Let Xij = # comparisons between ai and aj
in all Partition calls

18

Average # of Comparisons
Then, X = # comparisons in all Partition calls

= X12 + X13 + …+ Xn-1,n

 Average # comparisons :
E[X] = E[X12 + X13 + …+ Xn-1,n]

= E[X12] + E[X13] + …+ E[Xn-1,n]

Later, we shall group E[Xij] terms properly,
so that we can easily show E[X] = (n)

19

Comparison between ai and aj

Question: # times ai be compared with aj ?
Answer: At most once, which happens only

if ai or aj are chosen as pivot

1 3 2 4 5 6 8 7

pivot

After that, the pivot is fixed and is never
compared with the others

20

Comparison between ai and aj

Question: Will ai always be compared with aj ?
Answer: No. E.g., 4 and 6 are not compared

1 3 2 4 5 6 8 7

pivot

•In addition, if target is the 6th smallest
item, then 2 and 4 are also not compared

•When will a comparison occur ?

