
1

CS4311
Design and Analysis of

Algorithms

Tutorial: Randomized Selection

2

•Cinderella’s New Problem

•Randomized Selection
–Modification of Quicksort
–Average-Case

About this tutorial

3

Cinderella’s Problem

I see…

You have to find
the largest bolt

and the largest nut

4

Cinderella’s New Problem

I see…

You have to find
the nut matching

this bolt

5

Fairy Godmother’s Proposal

1. Pick one of the nut
2. Compare this nut with all

other bolts Find those
which are larger, and find
those which are smaller

6

Fairy Godmother’s Proposal

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

Done !

picked nut

7

picked nut

Fairy Godmother’s Proposal
3. Pick the bolt that is equal

to the selected nut
4. Compare this bolt with all

other nuts Find those
which are larger, and find
those which are smaller

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

8

Fairy Godmother’s Proposal

Nuts smaller
than bolt

Nuts larger
than bolt

Done !

9

Fairy Godmother’s Proposal

5. Recursively search in the side
with more nuts than bolts

^^ This is all of my proposal ^^

Nuts smaller
than bolt

Nuts larger
than bolt

10

Fairy Godmother’s Proposal

•Can you see why Fairy Godmother’s
proposal is a correct algorithm?

•What is the running time ?

•Worst-case: (n2) comparisons
•No better than the brute force approach !!

•Though worst-case runs badly, the
average case is good: (n) comparisons

11

Review: Quicksort
The Quicksort algorithm works as follows:

Quicksort(A,p,r) /* to sort array A[p..r] */

1. if (p r) return;
2. q = Partition(A,p,r);
3. Quicksort(A, p, p+q-1);
4. Quicksort(A, p+q+1, r);

To sort A[1..n], we just call Quicksort(A,1,n)

12

Our Algorithm
The previous algorithm works as follows:

/* Search in array A[p..r], knowing that the
desired value is inside A[p..r] */

Search(A,p,r)
1. if (p r) return;
2. q = Partition(A,p,r);
3. If target is in A[p..p+q-1]

Search(A, p, p+q-1) ;
4. Else Search(A, p+q+1, r);

13

Average Running Time

•The previous algorithm is called a
selection algorithm, which allows us to
find out the kth smallest item, for any k

•What is the average running time ?

Let T(n) denote average running time on
input of size n
We shall show that T(n) = O(n)

14

Average Running Time
Inductive Case (assume n is even):
T(n) ·q (1/n) max (T(q), T(n-q-1)) + (n)

· (2/n) q=1 to n/2 T(n-q-1) + (n)

· (2/n) c(3n/2-1)(n/2)/2 + (n)

= (3/4)cn + (n)
· cn when c is large enough

For odd n, we get T(n) (3/4)cn + (1/2)c + (n)

15

Average Running Time

Conclusion: T(n) = (n)

•In fact, there is another proof
which uses a similar technique as
we use in Quicksort

16

Average Running Time
Let X = # comparisons in all Partition
Then, we have:

Running time = (n + X) varies on input

Finding average of X (i.e. #comparisons)
gives average running time

17

Average # of Comparisons
Recall the notation:
•Let a1, a2, …, an denote the set of n

numbers initially placed in the array

•Further, assume a1 a2 …an

•Let Xij = # comparisons between ai and aj
in all Partition calls

18

Average # of Comparisons
Then, X = # comparisons in all Partition calls

= X12 + X13 + …+ Xn-1,n

 Average # comparisons :
E[X] = E[X12 + X13 + …+ Xn-1,n]

= E[X12] + E[X13] + …+ E[Xn-1,n]

Later, we shall group E[Xij] terms properly,
so that we can easily show E[X] = (n)

19

Comparison between ai and aj

Question: # times ai be compared with aj ?
Answer: At most once, which happens only

if ai or aj are chosen as pivot

1 3 2 4 5 6 8 7

pivot

After that, the pivot is fixed and is never
compared with the others

20

Comparison between ai and aj

Question: Will ai always be compared with aj ?
Answer: No. E.g., 4 and 6 are not compared

1 3 2 4 5 6 8 7

pivot

•In addition, if target is the 6th smallest
item, then 2 and 4 are also not compared

•When will a comparison occur ?

