
CS4311
DESIGN AND ANALYSIS

OF ALGORITHMS
Tutorial: Solution to Assignment 1

Speaker: 劉富翃 (FOGA)

OUTLINE

Solution for question 1

Solution for question 2

Solution for question 3

Solution for question 4

Two situations:

QUESTION 1

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4
7

24

30
34 35

36 37
39

45

50

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4
7

24

30
34 35

36 37
39

45

50

Two situations:

QUESTION 1

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4
7

24

30
34 35

36 37
39

45

50

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4
7

24

30
34 35

36 37
39

45

50

<

>

QUESTION 1

Two cases in 2nd situation:

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

24

30
34 35 36 37

39

45

50

QUESTION 1

Two cases in 2nd situation:

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

24

30
34 35 36 37

39

45

50s

all numbers > s

all numbers < s

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

24

30
34 35 36 37

39

45

50

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

24

30

45

50

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

24

30

45

50

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

45

50

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

45

50

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

50

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

7

50

Select minimum number

QUESTION 1

Do modified binary search

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
4

Return

QUESTION 1

Prove by induction

Inductive statement

- The minimum number is still remained at
the end of each round

QUESTION 1

Base case

- Initially, the minimum number is in the
sequence

Induction case

- Suppose the statement is true for the
ith round...

QUESTION 1

Induction case

- For the (i + 1)th round

S

middle

middle > s

first sequence

Don’t
affect 2nd
sequence

QUESTION 1

Induction case

- For the (i + 1)th round

S

middle

middle < s

second sequence
min

QUESTION 2

Observation:
- count = 0 iff the number of factors is even
- count = 1 iff the number of factors is odd

Physical meaning of count:
- count = 0 iff n is not a square number
- count = 1 iff n is a square number

QUESTION 2

Do binary search

- Suppose n = 9

4321 8765 9

5 * 5 = 25 > 9

QUESTION 2

Do binary search

- Suppose n = 9

4321 8765 9

QUESTION 2

Do binary search

- Suppose n = 9

4321 8765 9

2 * 2 = 4 < 9

QUESTION 2

Do binary search

- Suppose n = 9

4321 8765 9

QUESTION 2

Do binary search

- Suppose n = 9

4321 8765 9

3 * 3 = 9
Find the

square root of n

QUESTION 2

The numbers we are concerned is
halved in the end of each round, so
the time complexity is O(log n).

QUESTION 2

Prove by contradiction

Suppose our algorithm isn’t correct

- Our algorithm returns count = 1 and
there’s no integer k such that n = k2

- Our algorithm returns count = 0 and
there’s an integer k such that n = k2

QUESTION 2

First case

- If our algorithm outputs count = 1, then
there’s some k such that k2 = n.
Contradiction!

QUESTION 2

Second case

- The integer k must be ignored in some
phase, suppose it’s ith phase.

middle
m k... ... n...

ignored

QUESTION 2

Second case

- The integer k must be ignored in some
phase, suppose it’s ith phase.

middle
m k... ... n...

ignoredm * m > n k * k = n
Contradiction!

QUESTION 3

Prove by induction

Inductive statement:

- At the ith phase, the first to the ith
maximum numbers are at the correct
position

QUESTION 3

At each position

- Select larger number and put it on the
right side

See all positions from left to right

- The maximum number will be at the
current right-most position

QUESTION 3

Base case

- For the first phase, since we see all
numbers from left to right, the
maximum number will be at the right-
most position

QUESTION 3

Induction case

- Suppose the 1st~ith maximum numbers are at
correct positions, we’ll never do swap on them, and
those numbers can be ignored. We still see all the
positions from left to right for the remaining
sequence, thus the (i + 1)th maximum number will
be at the right-most position in the remaining
sequence

QUESTION 3

Number of inverted pairs <=
number of swap operations

Number of swap operations <=
number of inverted pairs

QUESTION 3

If x and y form an inverted pair,
then the algorithm swaps x and y
once and only once

If the algorithm swaps x and y,
then x and y form an inverted pair

QUESTION 3

Forward direction

- If x and y are a inverted pair, then
they must be swapped, otherwise the
sequence will not be sorted. After
swapping, x and y are not inverted, thus
x and y will not swap again.

QUESTION 3

Backward direction

- This is just what the algorithm said.

3. The BubbleSort algorithm is a very simple algorithm for sorting an array of numbers.
Given an input array A[1..n] with n distinct numbers, BubbleSort works by repeatedly
swapping adjacent elements in A as follows:

BubbleSort(A)

1. for Phase k = 1, 2, . . . , n

2. for Position j = 1, 2, . . . , n− 1

3. if A[j] > A[j + 1]

4. { Swap the entries A[j] and A[j + 1]; }

(a) (15%) Show that BubbleSort is correct.

(b) Consider the original array A[1..n]. We say a pair (A[i], A[j]) is inverted if i < j and
A[i] > A[j]. Intuitively, A[i] should be on the right of A[j] when the array is sorted,
but it is currently on the left of A[j].

• For example, if the array is 〈2, 3, 6, 4, 0〉, then the pair (3,0) is inverted, and in
total there are 5 inverted pairs.

(15%) Show that the number of inverted pairs in A is exactly equal to the number of
swaps when we perform BubbleSort on A.

** (c) (10%) By using brute force approach, one can easily count the number of inverted
pairs of A in Θ(n2) time. Design an algorithm that counts the number of inverted
pairs in O(n log n) time.

** Q3(c) is the hardest question. Spend more time and try your best to solve it!

4. (No marks.) Give asymptotic upper bound for T (n) in each of the following recurrence.
Make your bounds as tight as possible.

(a) T (n) = 9 T (n/2) + n3

(b) T (n) = 7 T (n/2) + n3

(c) T (n) = T (
√

n) + log n

(d) T (n) = 0.5 T (n/2) + n

(e) T (n) = 3 T (n/3) + n/3

2

QUESTION 3

Compute inverted pair

10 23 14 5 17 26 12 19

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 4

Total inverted pairs = 4 + 3 + 4 = 11

QUESTION 3

Compute inverted pair

5 10 14 23 12 17 19 26

Inverted pairs: 4

QUESTION 3

Compute inverted pair

5 10 14 23 12 17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 4

QUESTION 3

Do modified merge

5 10 14 23 12 17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 0

QUESTION 3

Do modified merge

5

10 14 23 12 17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 0

QUESTION 3

Do modified merge

5 10

14 23 12 17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 0

QUESTION 3

Do modified merge

5 10

14 23

12

17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 2

QUESTION 3

Do modified merge

5 10 14

23

12

17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 2

QUESTION 3

Do modified merge

5 10 14

23

12 17

19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 3

QUESTION 3

Do modified merge

5 10 14

23

12 17 19

26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 4

QUESTION 3

Do modified merge

5 10 14 2312 17 19

26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 4

QUESTION 3

Do modified merge

5 10 14 2312 17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 4

Total inverted pairs = 4 + 3 + 4 = 11

QUESTION 3

The modified merge runs in O(n)

We modify merge sort by calling
modified merge to compute inverted
pairs. The running time is O(nlogn)

QUESTION 4

a. Use Master theorem case 1

T(n) = (nlog29)

b. Use Master theorem case 3

T(n) = (n3) (by choosing c = 7/8)

c. Use substitution method

T(n) = (log n)

€

θ

€

θ

€

θ

QUESTION 4

d. Use recursion tree method

T(n) = (n)

Cannot use Master theorem because
a = 0.5 < 1

e. Use Master theorem case 2

T(n) = (n log n)

€

θ

€

θ

QUESTION 4

You can use recursion tree method
in all the 5 questions, but it is also
important to you to practice on
Master theorem!

