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Two cases in 2nd situation:
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QUESTION 1

Do modified binary search
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Do modified binary search
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QUESTION 1

Prove by induction

Inductive statement

- The minimum number is still remained at 
the end of each round



QUESTION 1

Base case

- Initially, the minimum number is in the 
sequence

Induction case

- Suppose the statement is true for the 
ith round...



QUESTION 1

Induction case

- For the (i + 1)th round

S ... ...

middle

middle > s

first sequence

Don’t 
affect 2nd 
sequence



QUESTION 1

Induction case

- For the (i + 1)th round

S ... ...

middle

middle < s

second sequence
min



QUESTION 2

Observation:
- count = 0 iff the number of factors is even
- count = 1 iff the number of factors is odd

Physical meaning of count:
- count = 0 iff n is not a square number
- count = 1 iff n is a square number



QUESTION 2

Do binary search

- Suppose n = 9

4321 8765 9

5 * 5 = 25 > 9
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Do binary search

- Suppose n = 9
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Do binary search

- Suppose n = 9

4321 8765 9

2 * 2 = 4 < 9
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Do binary search

- Suppose n = 9

4321 8765 9



QUESTION 2

Do binary search

- Suppose n = 9

4321 8765 9

3 * 3 = 9
Find the

square root of n



QUESTION 2

The numbers we are concerned is 
halved in the end of each round, so 
the time complexity is O(log n).



QUESTION 2

Prove by contradiction

Suppose our algorithm isn’t correct

- Our algorithm returns count = 1 and 
there’s no integer k such that n = k2

- Our algorithm returns count = 0 and 
there’s an integer k such that n = k2



QUESTION 2

First case

- If our algorithm outputs count = 1, then 
there’s some k such that k2 = n. 
Contradiction!



QUESTION 2

Second case

- The integer k must be ignored in some 
phase, suppose it’s ith phase.

middle
m k... ... n...

ignored



QUESTION 2

Second case

- The integer k must be ignored in some 
phase, suppose it’s ith phase.

middle
m k... ... n...

ignoredm * m > n k * k = n
Contradiction!



QUESTION 3

Prove by induction

Inductive statement:

- At the ith phase, the first to the ith 
maximum numbers are at the correct 
position



QUESTION 3

At each position

- Select larger number and put it on the 
right side

See all positions from left to right

- The maximum number will be at the 
current right-most position



QUESTION 3

Base case

- For the first phase, since we see all 
numbers from left to right, the 
maximum number will be at the right-
most position



QUESTION 3

Induction case

- Suppose the 1st~ith maximum numbers are at 
correct positions, we’ll never do swap on them, and 
those numbers can be ignored. We still see all the 
positions from left to right for the remaining 
sequence, thus the (i + 1)th maximum number will 
be at the right-most position in the remaining 
sequence



QUESTION 3

Number of inverted pairs <= 
number of swap operations

Number of swap operations <= 
number of inverted pairs



QUESTION 3

If x and y form an inverted pair, 
then the algorithm swaps x and y 
once and only once

If the algorithm swaps x and y, 
then x and y form an inverted pair



QUESTION 3

Forward direction

- If x and y are a inverted pair, then 
they must be swapped, otherwise the 
sequence will not be sorted. After 
swapping, x and y are not inverted, thus 
x and y will not swap again.



QUESTION 3

Backward direction

- This is just what the algorithm said.

3. The BubbleSort algorithm is a very simple algorithm for sorting an array of numbers.
Given an input array A[1..n] with n distinct numbers, BubbleSort works by repeatedly
swapping adjacent elements in A as follows:

BubbleSort(A)

1. for Phase k = 1, 2, . . . , n

2. for Position j = 1, 2, . . . , n− 1

3. if A[j] > A[j + 1]

4. { Swap the entries A[j] and A[j + 1]; }

(a) (15%) Show that BubbleSort is correct.

(b) Consider the original array A[1..n]. We say a pair (A[i], A[j]) is inverted if i < j and
A[i] > A[j]. Intuitively, A[i] should be on the right of A[j] when the array is sorted,
but it is currently on the left of A[j].

• For example, if the array is 〈2, 3, 6, 4, 0〉, then the pair (3,0) is inverted, and in
total there are 5 inverted pairs.

(15%) Show that the number of inverted pairs in A is exactly equal to the number of
swaps when we perform BubbleSort on A.

** (c) (10%) By using brute force approach, one can easily count the number of inverted
pairs of A in Θ(n2) time. Design an algorithm that counts the number of inverted
pairs in O(n log n) time.

** Q3(c) is the hardest question. Spend more time and try your best to solve it!

4. (No marks.) Give asymptotic upper bound for T (n) in each of the following recurrence.
Make your bounds as tight as possible.

(a) T (n) = 9 T (n/2) + n3

(b) T (n) = 7 T (n/2) + n3

(c) T (n) = T (
√

n) + log n

(d) T (n) = 0.5 T (n/2) + n

(e) T (n) = 3 T (n/3) + n/3

2



QUESTION 3

Compute inverted pair

10 23 14 5 17 26 12 19

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 4

Total inverted pairs = 4 + 3 + 4 = 11
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5 10 14 23 12 17 19 26

Inverted pairs: 4
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Do modified merge

5 10 14 2312 17 19 26

Inverted pairs: 4 Inverted pairs: 3

Inverted pairs: 4

Total inverted pairs = 4 + 3 + 4 = 11



QUESTION 3

The modified merge runs in O(n)

We modify merge sort by calling 
modified merge to compute inverted 
pairs. The running time is O(nlogn)



QUESTION 4

a. Use Master theorem case 1

T(n) =    (nlog29)

b. Use Master theorem case 3

T(n) =    (n3)       (by choosing c = 7/8)

c. Use substitution method

T(n) =    (log n)
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QUESTION 4

d. Use recursion tree method

T(n) =    (n)

Cannot use Master theorem because 
a = 0.5 < 1

e. Use Master theorem case 2

T(n) =    (n log n)
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QUESTION 4

You can use recursion tree method 
in all the 5 questions, but it is also 
important to you to practice on 
Master theorem!


