
CS4311
Design and Analysis of

Algorithms

Tutorial: Assignment 1

Speaker: 劉富翃 (FOGA)

Outline

• What’s a good answer
– A sample question and solution

• Hint for the assignment 1
– Due date: 3/12

Sample Question

Question:
Given a sequence of numbers, design
an algorithm to find the maximum
number. Show your algorithm is
correct and analyze the time
complexity.

How to write the answer?

Bad Answer

• Algorithm:
00
01
02
03
04
05
06
07
08
09
10
11

public class FindMax {
public static void main(String[] args) {

int data[] = new int[] {17, 26, 14, 19, 10, 23, 12, 5};
int count = 0;
int max = Integer.MIN_VALUE;
for(int i=0; i<data.length; i++) {

if(data[i] > max)
max = data[i];

count++;
}
System.out.println("Max Number: " + max);
System.out.println("Count: " + count);

}
}

Bad Answer

• Correctness:
26 is actually the maximum of the input data, so
the algorithm is correct.

• Time complexity:
Since count = 8 is equal to the number of input
data, therefore, the running time is O(n).

C:\>java FindMax
Max Number: 26
Count: 8
C:\>

Good Answer
•Algorithm:
Given a sequence of number,
Step 1: Pick up the first number and suppose it is

maximum.
Step 2: Pick up a number from the remaining numbers.
Step 3: Compare the picked number and current

maximum.
Step 4: Throw out the smaller and suppose the larger

one as the new maximum.
Step 5: Repeat 2~4 until there’s no number remaining.
Step 6: Output the current maximum.

Good Answer

• Correctness:
Suppose our algorithm doesn’t output the
maximum number m, then m must be
thrown out. It means m is smaller than
some number. Since some number is
greater than m, m is not maximum. We got
a contradiction, therefore, our algorithm
will output the maximum number.

Good Answer

• Time complexity:
The operations involved are picking or
throwing out numbers. Since each
number is only picked once and
thrown out once, and there are totally
n numbers, the running time is n * O(1)
= O(n).

Question 1
4 7 24 30 34 35 36 37 39 45 50

4 7 24 30 34 35 36 37 39 45 50

34 35 36 37 39 45 50 4 7 24 30

Question 1
4 7 24 3034 35 36 37 39 45 50

4 7 24 3034 35 36 37 39 45 50

Where?

4 7 24 30 34 35 36 37 39 45 50

Question 1

• Design an O(log n)-time algorithm to
find the minimum item.

• Show that your algorithm is correct.

Question 1

• Hint:

4
7

24

30

34 35 36 37
39

45

50

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

34 35 36 37
39

45

50

4
7

24

30

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Question 2

ComputeCount()
1. Input a positive integer n
2. Set count = 0
3. for j = 1, 2, …, n
4. if j is a factor of n
5. { Update count to become 1 - count }
6. Output count

What’s the running time?
Θ(n)

Can it be
faster?

Question 2

• Design a faster algorithm that can
compute count.
– O(), O(log n), O(1)…
– Note: You can only use RAM operations.
– E.g., you cannot assume 2x or log x can be

computed in O(1) time.
• Explain why your algorithm is correct.

n

Question 2

• Hint:
What’s the physical meaning of count?

Question 3

BubbleSort(A)
1. for Phase k = 1, 2, …, n
2. for Position j = 1, 2, …, n - 1
3. if A[j] > A[j + 1]
4. { Swap the entries A[j] and A[j + 1] }

Show the algorithm is correct.

Question 3

Inverted Pair:
Given (A0, A1, A2, …, An)
if i < j and Ai > Aj,
then (Ai, Aj) is inverted.

Example:
Given (2, 3, 6, 4, 0)
(2, 0), (3, 0), (6, 4), (6, 0), (4, 0) are inverted.

Question 3

• Show that the number of inverted
pairs is exactly equal to the number
of swaps when we perform
BubbleSort.

• Design an algorithm that counts the
number of inverted pairs in O(n log n)
time.

Question 3

• Hint:

10 23 14 5 17 26 12 19

Inverted pairs:
4

Inverted pairs:
3

Inverted pairs: 4

Total inverted pairs = 4 + 4 + 3 = 11

(for the
last part)

Question 4 (No marks)

Give asymptotic upper bound for each T(n)
a)
b)
c)
d)
e)

T n()= 9T n 2()+ n3

T n()= 7T n 2()+ n3

T n()= T n()+ logn
T n()= 0.5T n 2()+ n
T n()= 3T n 3()+ n 3

Good Luck

• Please try to write your answer in large
font. Thanks a lot!

