
1

CS4311
Design and Analysis of

Algorithms

Lecture 9: Dynamic Programming I

2

•Divide-and-conquer strategy allows us to
solve a big problem by handling only
smaller sub-problems

•Some problems may be solved using a
stronger strategy: dynamic programming

•We will see some examples today

About this lecture

3

Assembly Line Scheduling

•You are the boss of a company which
assembles Gundam models to customers

4

Assembly Line Scheduling

•Normally, to assemble a Gundam model,
there are n sequential steps

Step 0:
getting model

Step 1:
assembling body

Step 2:
assembling legs

… Step n-1:
polishing

Step n:
packaging

5

Assembly Line Scheduling

•To improve efficiency, there are two
separate assembly lines:

…

…

Line 1

Line 2

6

Assembly Line Scheduling

•Since different lines hire different
people, processing speed is not the same:

…

…

Line 1

Line 2

5 1 3 2 3

62 1 3 1

E.g., Line 1 may need 34 mins, and Line 2 may need 38 mins

7

Assembly Line Scheduling
•With some transportation cost, after a

step in a line, we can process the model in
the other line during the next step

…

…

Line 1

Line 2

5 1 3 2 3

62 1 3 1

21 32 1 4

8

Assembly Line Scheduling
•When there is an urgent request, we may

finish faster if we can make use of both
lines + transportation in between

…

…

Line 1

Line 2

5 1 3 2 3

62 1 3 1

21 32 1 4

E.g., Process Step 0 at Line 2, then process Step 1 at Line 1,
 better than process both steps in Line 1

9

Assembly Line Scheduling
Question: How to compute the fastest

assembly time?
Let p1,k = Step k’s processing time in Line 1

p2,k = Step k’s processing time in Line 2
t1,k = transportation cost from Step k in

Line 1 (to Step k+1 in Line 2)

t2,k = transportation cost from Step k in
Line 2 (to Step k+1 in Line 1)

10

Assembly Line Scheduling
Let f1,j = fastest time to finish Steps 0 to j,

ending at Line 1
f2,j = fastest time to finish Steps 0 to j,

ending at Line 2

So, we have:
f1,0 = p1,0 , f2,0 = p2,0

fastest time = min { f1,n, f2,n }

11

Assembly Line Scheduling
How can we get f1,j ?

Intuition:
Let (1,j) = jth step of Line 1
The fastest way to get to (1,j) must be:
•First get to the (j-1)th step of each

lines using the fastest way, and choose
whichever one that goes to (1,j) faster

Is our intuition correct ?

12

Assembly Line Scheduling
Lemma: For any j > 0,

f1,j = min { f1,j-1 + p1,j, f2,j-1 + t2,j-1 + p1,j }
f2,j = min { f2,j-1 + p2,j, f1,j-1 + t1,j-1 + p2,j }

Proof: By induction + contradiction

Here, optimal solution to a problem (e.g., f1,j) is based on
optimal solution to subproblems (e.g., f1,j-1 and f2,j-1)

 optimal substructure property

13

Define a function Compute_F(i,j) as follows:
Compute_F(i, j) /* Finding fi,j */

1. if (j == 0) return pi,0;
2. g = Compute_F(i,j-1) + pi,j ;
3. h = Compute_F(3-i,j-1) + t3-i,j-1 + pi,j ;
4. return min { g, h } ;

Calling Compute_F(1,n) and Compute_F(2,n)
gives the fastest assembly time

Assembly Line Scheduling

14

Assembly Line Scheduling
Question: What is the running time of

Compute_F(i,n)?

Let T(n) denote its running time
So, T(n) = 2T(n-1) + (1)
By Recursion-Tree Method,

T(n) = (2n)

15

Assembly Line Scheduling
To improve the running time, observe that:

To Compute_F(1,j) and Compute_F(2,j),
both require the SAME subproblems:
Compute_F(1,j-1) and Compute_F(2,j-1)

So, in our recursive algorithm, there are
many repeating subproblems which create
redundant computations !

Question: Can we avoid it ?

16

Bottom-Up Approach (Method I)

•We notice that
fi,j depends only on f1,k or f2,k with k j

•Let us create a 2D table F to store all fi,j
values once they are computed

•Then, let us compute fi,j from j = 0 to n

17

BottomUp_F() /* Finding fastest time */

1. F[1,0] = pi,0 , F[2,0] = p2,0 ;
2. for (j = 1,2,…, n) {

Compute F[1,j] and F[2,j] ;
// Based on F[1,j-1] and F[2,j-1]

}
3. return min { F[1,n] , F[2,n] } ;

Running Time = (n)

Bottom-Up Approach (Method I)

18

Memoization (Method II)

•Similar to Bottom-Up Approach, we create
a table F to store all fi,j once computed

•However, we modify the recursive
algorithm a bit, so that we still solve
compute the fastest time in a Top-Down

•Assume: entries of F are initialized empty

Memoization comes from the word “memo”

19

Compute_F(i, j) /* Finding fi,j */

1. if (j == 0) return pi,0;
2. g = Compute_F(i,j-1) + pi,j ;
3. h = Compute_F(3-i,j-1) + t3-i,j-1 + pi,j ;
4. return min { g, h } ;

Original Recursive Algorithm

20

Memo_F(i, j) /* Finding fi,j */

1. if (j == 0) return pi,0;
2. if (F[i,j-1] is empty)

F[i,j-1] = Memo_F(i,j-1) ;
3. if (F[3-i,j-1] is empty)

F[3-i,j-1] = Memo_F(3-i,j-1);
4. g = F[i,j-1] + pi,j ;
5. h = F[3-i,j-1] + t3-i,j-1 + pi,j ;
6. return min { g, h } ;

Memoized Version

21

Memoized Version (Running Time)

To find Memo_F(1, n):
1. Memo_F(i, j) is only called when F[i,j] is

empty (it becomes nonempty afterwards)

 (n) calls

2. Each Memo_F(i, j) call only needs (1)
time apart from recursive calls

Running Time = (n)

22

Dynamic Programming
The previous strategy that applies “tables”

is called dynamic programming (DP)

[Here, programming means:
a good way to plan things / to optimize the steps]

•A problem that can be solved efficiently
by DP often has the following properties:
1. Optimal Substructure (allows recursion)
2. Overlapping Subproblems (allows speed up)

23

Assembly Line Scheduling
Challenge: We now know how to compute the

fastest assembly time. How to
get the exact sequence of steps
to achieve this time?

Answer: When we compute fi,j, we remember
whether its value is based on f1,j-1 or f2,j-1

 easy to modify code to get the sequence

24

Sharing Gold Coins
Five lucky pirates has discovered a treasure

chest with 1000 gold coins …

25

Sharing Gold Coins
There are rankings among the pirates:

1 2 3 4 5

…and they decide to share the gold coins in
the following way:

26

Sharing Gold Coins
First, Rank-1 pirate proposes how to share

the coins…
•If at least half of them agree, go with

the proposal
•Else, Rank-1 pirate is out of the game

Hehe, I am going to make the first
proposal …but there is a danger

that I cannot share any coins

27

Sharing Gold Coins
If Rank-1 pirate is out, then Rank-2 pirate

proposes how to share the coins…
•If at least half of the remaining agree, go

with the proposal
•Else, Rank-2 pirate is out of the game

Hehe, I get a chance to propose if
Rank-1 pirate is out of the game

28

Sharing Gold Coins
In general, if Rank-1, Rank-2, …, Rank-k

pirates are out, then Rank-(k+1) pirate
proposes how to share the coins…

•If at least half of the remaining agree, go
with the proposal

•Else, Rank-(k+1) pirate is out of the game

Question: If all the pirates are smart, who
will get the most coin? Why?

