CS4311
 Design and Analysis of Algorithms

Supplement of Lecture 5:
Probability \& Expectation

About this lecture

- What is Probability?
- What is an Event?
- What is a Random Variable?
- What is Expectation or "Average Value" of a Random Variable?
- Useful Thm: Linearity of Expectation

Experiment and Sample Space

- An experiment is a process that produces an outcome
- A random experiment is an experiment whose outcome is not known until it is observed
- Exp 1: Throw a die once
- Exp 2: Flip a coin until Head comes up

Experiment and Sample Space

- A sample space Ω of a random experiment is the set of all outcomes
- Exp 1: Throw a die once
- Sample space: \{1,2,3,4,5,6\}
- Exp 2: Flip a coin until Head comes up
- Sample space: ??
- Any subset of sample space Ω is called an event

Probability

- Probability studies the chance of each event occurring
- Informally, it is defined with a function Pr that satisfies the following:
(1) For any event $E, 0 \leq \operatorname{Pr}(E) \leq 1$
(2) $\operatorname{Pr}(\Omega)=1$
(3) If E_{1} and E_{2} do not have common outcomes,

$$
\operatorname{Pr}\left(E_{1} \cup E_{2}\right)=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)
$$

Example

Questions:

1. Suppose the die is a fair die, so that

$$
\operatorname{Pr}(1)=\operatorname{Pr}(2)=\ldots=\operatorname{Pr}(6) .
$$

What is $\operatorname{Pr}(1)$? Why?
2. Instead, if we know
$\operatorname{Pr}(1)=0.2, \operatorname{Pr}(2)=0.3, \operatorname{Pr}(3)=0.4$,
$\operatorname{Pr}(4)=0.1, \operatorname{Pr}(5)=\operatorname{Pr}(6)=0$.
What is $\operatorname{Pr}(\{1,2,4\})$?

Random Variable

Definition: A random variable X on a sample space Ω is a function that maps each outcome of Ω into a real number. That is, $X: \Omega \rightarrow \mathcal{R}$.

Ex: Suppose that we throw two dice

$$
\rightarrow \Omega=\{(1,1),(1,2), \ldots,(6,5),(6,6)\}
$$

Define X = sum of outcome of two dice
$\rightarrow X$ is a random variable on Ω

Random Variable

- For a random variable X and a value a, the notation

$$
\text { " } X=a \text { " }
$$

denotes the set of outcomes ω in the sample space such that $X(\omega)=a$
\rightarrow " $X=a$ " is an event

- In previous example,

$$
\text { " } X=10 \text { " is the event }\{(4,6),(5,5),(6,4)\}
$$

Expectation

Definition: The expectation (or average value) of a random variable X, is

$$
E[X]=\sum_{i} i \operatorname{Pr}(X=i)
$$

Question:

- $X=$ sum of outcomes of two fair dice What is the value of $E[X]$?
- How about the sum of three dice?

Expectation (Example)

Let $X=$ sum of outcomes of two dice.
The value of X can vary from 2 to 12
So, we calculate:

$$
\begin{aligned}
& \operatorname{Pr}(X=2)=1 / 36, \operatorname{Pr}(X=3)=2 / 36, \\
& \operatorname{Pr}(X=4)=3 / 36, \ldots, \operatorname{Pr}(X=12)=2 / 36,
\end{aligned}
$$

$$
\begin{aligned}
E[X]= & 2 \star \operatorname{Pr}(X=2)+3 \star \operatorname{Pr}(X=3)+\ldots+ \\
& 11 * \operatorname{Pr}(X=11)+12 * \operatorname{Pr}(X=12) \\
= & 7
\end{aligned}
$$

Linearity of Expectation

Theorem: Given random variables X_{1}, X_{2}, \ldots, X_{k}, each with finite expectation, we have

$$
E\left[X_{1}+X_{2}+\ldots+X_{k}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots+E\left[X_{k}\right]
$$

Let $X=$ sum of outcomes of two dice. Let $X_{i}=$ the outcome of the $i^{\text {th }}$ dice What is the relationship of X, X_{1}, and X_{2} ? Can we compute $E[X]$?

Linearity of Expectation (Example)

Let $X=$ sum of outcomes of two dice.
Let $X_{i}=$ the outcome of the $i^{\text {th }}$ dice
$\rightarrow X=X_{1}+X_{2}$
$\rightarrow E[X]=E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]$

$$
=7 / 2+7 / 2=7
$$

Can you compute the expectation of the sum of outcomes of three dice?

