
1

CS4311
Design and Analysis of

Algorithms

Lecture 3: Recurrences



2

•Introduce some ways of solving
recurrences
–Substitution Method (If we know the answer)
–Recursion Tree Method (Very useful !)
–Master Theorem (Save our effort)

About this lecture



3

How to solve this?
T(n) = 2T(bn/2c) + n, with T(1) = 1

1. Make a guess
E.g., T(n) = O(n log n)

2. Show it by induction
• E.g., to show upper bound, we find constants

c and n0 such that T(n) · c f(n) for n = n0,

n0+1, n0+2, …

Substitution Method
(if we know the answer)



4

How to solve this?
T(n) = 2T(bn/2c) + n, with T(1) = 1

1. Make a guess (T(n) = O(n log n))

2. Show it by induction
• Firstly, T(2) = 4, T(3) = 5.
 We want to have T(n) · cn log n

 Let c = 2  T(2) and T(3) okay

• Other Cases ?

Substitution Method
(if we know the answer)



5

• Induction Case:
Assume the guess is true for all n = 2,3,…,k
For n = k+1, we have:

T(n) = 2T(bn/2c) + n

· 2cbn/2c log bn/2c+ n

· cn log (n/2) + n

= cn log n –cn + n · cn log n

Substitution Method
(if we know the answer)

Induction
case is true



6

Q. How did we know the value of c and n0 ?
A. If induction works, the induction case

must be correct  c ¸ 1

Then, we find that by setting c = 2, our
guess is correct as soon as n0 = 2
Alternatively, we can also use c = 1.3
Then, we just need a larger n0 = 4
(What will be the new base cases? Why?)

Substitution Method
(if we know the answer)



7

How to solve this?
T(n) = T(bn/2c) + T(dn/2e) + 1, T(1) = 1

1. Make a guess (T(n) = O(n)), and

2. Show T(n) · cn by induction

– What will happen in induction case?

Substitution Method
(New Challenge)



8

Induction Case:
(assume guess is true for some base cases)

T(n) = T(bn/2c) + T(dn/2e) + 1

· cbn/2c + cdn/2e + 1

= cn + 1

Substitution Method
(New Challenge)

This term is not
what we want …



9

• The 1st attempt was not working because
our guess for T(n) was a bit “loose”

Recall: Induction may become easier if we
prove a “stronger”statement

2nd Attempt: Refine our statement

Try to show T(n) · cn - b instead

Substitution Method
(New Challenge)



10

Induction Case:
T(n) = T(bn/2c) + T(dn/2e) + 1

· cbn/2c - b + cdn/2e - b + 1

· cn - b

Substitution Method
(New Challenge)

We get the desired
term (when b 1)

It remains to find c and n0, and prove the
base case(s), which is relatively easy



11

How to solve this?

T(n) = 2T( ) + log n ?

Substitution Method
(New Challenge 2)

n

Hint: Change variable: Set m = log n



12

Substitution Method
(New Challenge 2)

Set m = log n , we get

T(2m) = 2T(2m/2) + m

Next, set S(m) = T(2m) = T(n)

S(m) = 2S(m/2) + m

We solve S(m) = O(m log m)
 T(n) = O(log n log log n)



13

How to solve this?
T(n) = 2T(n/2) + n2, with T(1) = 1

Recursion Tree Method
( Nothing Special…Very Useful ! )



14

Expanding the terms, we get:

T(n) = n2 + 2T(n/2)
= n2 + 2n2/4 + 4T(n/4)
= n2 + 2n2/4 + 4n2/16 + 8T(n/8)
= …

=k=0 to log n–1 (1/2)k n2 + 2log n T(1)

= (n2) + (n) = (n2)

Recursion Tree Method
( Nothing Special…Very Useful ! )



15

We can express the previous recurrence by:

Recursion Tree Method
( Recursion Tree View )



16

Further expressing gives us:

This term is
from T(n/2)



17

How to solve this?
T(n) = T(n/3) + T(2n/3) + n, with T(1) = 1

What will be the recursion tree view?

Recursion Tree Method
( New Challenge )



18

The corresponding recursion tree view is:



19

When the recurrence is in a special form, we
can apply the Master Theorem to solve
the recurrence immediately

The Master Theorem has 3 cases …

Master Method
( Save our effort )



20

Theorem: (Case 1: Very Small f(n) )

If f(n) = O(nlogb a - ) for some constant 0

then T(n) = (nlogb a)

Master Theorem

Let T(n) = aT(n/b) + f(n)
with a 1 and b 1 are constants.



21

Theorem: (Case 2: Moderate f(n) )

If f(n) = (nlogb a),

then T(n) = (nlogb a log n)

Theorem: (Case 3: Very large f(n) )

If (i) f(n) = (nlogb a + ) for some constant 0

and (ii) a f(n/b) c f(n) for some constant c 1,
all sufficiently large n

then T(n) = (f(n))



22

Master Theorem (Exercises)

1. Solve T(n) = 9T(n/3) + n

2. Solve T(n) = 9T(n/3) + n2

3. Solve T(n) = 9T(n/3) + n3

4. How about this?
T(n) = 9T(n/3) + n2 log n ?


