
1

CS4311
Design and Analysis of

Algorithms

Lecture 27:
Single-Source Shortest-Path

2

About this lecture
•What is the problem about ?

•Dijkstra’s Algorithm [1959]

•~ Prim’s Algorithm [1957]

•Folklore Algorithm for DAG [???]

•Bellman-Ford Algorithm
•Discovered by Bellman [1958], Ford [1962]

•Allowing negative edge weights

3

•Let G = (V,E) be a weighted graph
•the edges in G have weights
•can be directed/undirected
•can be connected/disconnected

•Let s be a special vertex, called source

Target: For each vertex v, compute the
length of shortest path from s to v

Single-Source Shortest Path

4

•E.g.,

Single-Source Shortest Path

4

8

11

8 7
9

10

144

21

2

67
s

4

8

11

8 7
9

10

144

21

2

67
s 0

4 12 19

21

119

14

8

5

Relax
•A common operation that is used in the

three algorithms is called Relax :
when a vertex v can be reached from the
source with a certain distance, we examine
an outgoing edge, say (v,w), and check if
we can improve w

•E.g., 4

8

11

8

1

2

67
s 0

4 ?

?

? ?

v
Can we improve this?

Can we improve these?

6

Dijkstra’s Algorithm
Dijkstra(G, s)

For each vertex v,
Mark v as unvisited, and set d(v) = 1 ;

Set d(s) = 0 ;
while (there is unvisited vertex) {

v = unvisited vertex with smallest d ;
Visit v, and Relax all its outgoing edges;

}
return d ;

7

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

11

1

10

1

1

4

8

11

8 7
9

10

144

21

2

67
1

1

1

1

10

4

8

Relax

1
s

8

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

11

1

10

4

8

4

8

11

8 7
9

10

144

21

2

67
1

1

1

1

10

4

8

Relax

12
s

9

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

1

1

10

4

8

12

4

8

11

8 7
9

10

144

21

2

67
1

1

1

0

4

8

Relax

12

9

15
s

10

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

1

0

4

8

12

9

15

4

8

11

8 7
9

10

144

21

2

67
1

1

0

4

8

Relax

12

9

15

11

s

11

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

0

4

8

12

9

15

11

4

8

11

8 7
9

10

144

21

2

67
0

4

8

Relax

12

9

15

11

25

21
s

12

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

15

11

25

21

4

8

11

8 7
9

10

144

21

2

67
0

4

8

Relax

12

9

14

11

19

21
s

13

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

Relax

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

14

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

Relax

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

15

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

Relax

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

16

Correctness
Theorem:

The kth vertex closest to the source s is
selected at the kth step inside the while
loop of Dijkstra’s algorithm
Also, by the time a vertex v is selected,
d(v) will store the length of the shortest
path from s to v

How to prove ? (By induction)

17

Proof
•Both statements are true for k = 1 ;
•Let vj = jth closest vertex from s
•Now, suppose both statements are true

for k = 1, 2, …, r-1
•Consider the rth closest vertex vr

•If there is no path from s to vr

 d(vr) = 1 is never changed

•Else, there must be a shortest path
from s to vr ; Let vt be the vertex
immediately before vr in this path

18

•Then, we have t r-1 (why??)

 d(vr) is set correctly once vt is selected,
and the edge (vt,vr) is relaxed (why??)

 After that, d(vr) is fixed (why??)

 d(vr) is correct when vr is selected ;
also, vr must be selected at the rth step,
because no unvisited nodes can have a
smaller d value at that time

Thus, the proof of inductive case completes

Proof (cont)

19

Performance
•Dijkstra’s algorithm is similar to Prim’s
•By using Fibonacci Heap,

•Relax Decrease-Key
•Pick vertex Extract-Min

•Running Time:
•O(V) Insert/Extract-Min
•At most O(E) Decrease-Key
 Total Time: O(E + V log V)

20

Finding Shortest Path in DAG
We have a faster algorithm for DAG :
DAG-Shortest-Path(G, s)

Topological Sort G ;
For each v, set d(v) = 1 ; Set d(s) = 0 ;

for (k = 1 to |V|) {
v = kth vertex in topological order ;
Relax all outgoing edges of v ;

}
return d ;

21

Example

Topological
Sort

8

s
4 3 2 6

5

11

4

8

11

3

2

65

s

22

Example

8

s
4 3 2 6

5

11

1 0 1 1 1 1

Process
this node

8

s
4 3 2 6

5

11

Relax

1 1 10 1 1

23

Example

8

s
4 3 2 6

5

11

1 0 1 1 1 1

8

s
4 3 2 6

5

11

Relax

1 1 10 3 11

Process
this node

24

Example

Process
this node

8

s
4 3 2 6

5

11

1 0 1 13 11

8

s
4 3 2 6

5

11

Relax

1 10 3 115

25

Example

Process
this node

8

s
4 3 2 6

5

11

1 0 13 115

8

s
4 3 2 6

5

11

Relax

1 0 3 105 11

26

Example

Process
this node

8

s
4 3 2 6

5

11

1 0 3 105 11

8

s
4 3 2 6

5

11

Relax

1 0 3 105 11

27

Example

Process
this node

8

s
4 3 2 6

5

11

Relax

1 0 3 105 11

8

s
4 3 2 6

5

11

1 0 3 105 11

28

Correctness
Theorem:

By the time a vertex v is selected,
d(v) will store the length of the shortest
path from s to v

How to prove ? (By induction)

29

Proof
•Let vj = jth vertex in the topological order
•We will show that d(vk) is set correctly

when vk is selected, for k = 1,2, …, |V|
•When k = 1,

vk = v1 = leftmost vertex
If it is the source, d(vk) = 0
If it is not the source, d(vk) = 1
 In both cases, d(vk) is correct (why?)

 Base case is correct

30

Proof (cont)
•Now, suppose the statement is true for

k = 1, 2, …, r-1
•Consider the vertex vr

•If there is no path from s to vr

 d(vr) = 1 is never changed

•Else, we shall use similar arguments as
proving the correctness of Dijkstra’s
algorithm …

31

•First, let vt be the vertex immediately
before vr in the shortest path from s to vr

 t r-1
 d(vr) is set correctly once vt is selected,

and the edge (vt,vr) is relaxed
 After that, d(vr) is fixed
 d(vr) is correct when vr is selected

Thus, the proof of inductive case completes

Proof (cont)

32

Performance
• DAG-Shortest-Path selects vertex

sequentially according to topological order
•no need to perform Extract-Min

•We can store the d values of the vertices
in a single array Relax takes O(1) time

•Running Time:
•Topological sort : O(V + E) time
•O(V) select, O(E) Relax : O(V + E) time
 Total Time: O(V + E)

33

Handling Negative Weight Edges

•When a graph has negative weight edges,
shortest path may not be well-defined

v
4

8

11
-7

s

-7

What is the shortest
path from s to v?

E.g.,

34

Handling Negative Weight Edges
•The problem is due to the presence of a

cycle C, reachable by the source, whose
total weight is negative
 C is called a negative-weight cycle

•How to handle negative-weight edges ??
 if input graph is known to be a DAG,

DAG-Shortest-Path is still correct
 For the general case, we can use

Bellman-Ford algorithm

35

Bellman-Ford Algorithm
Bellman-Ford(G, s) // runs in O(VE) time

For each v, set d(v) = 1 ; Set d(s) = 0 ;
for (k = 1 to |V|-1)

Relax all edges in G in any order ;
/* check if s reaches a neg-weight cycle */
for each edge (u,v),

if (d(v) d(u) + weight(u,v))
return “something wrong !!”;

return d ;

36

Example 1

4

8

3 -7s

8

-2

10

Relax all

0

1

1

1

1 Relax all

Relax all
10

4

8

3 -7s

8

-2

100

1

1

4

8

3 -7s

8

-2

0

4

8

3 -7s

8

-2

100

1

4

8

4

7

14

7

0

11

37

Example 1

After the 4th Relax all

10

4

8

3 -7s

8

-2

0

4

7

0

10

After checking, we found that there is
nothing wrong distances are correct

38

Example 2

4

8

3 -7s

8

-2

1

Relax all

0

1

1

1

1 Relax all

Relax all
1

4

8

3 -7s

8

-2

10

1

1

4

8

3 -7s

8

-2

0

4

8

3 -7s

8

-2

10

1

4

8

4

7

11

0

-7

2

39

Example 2

After the 4th Relax all

1

4

8

3 -7s

8

-2

0

-7

-8

-15

-6

After checking, we found that something
must be wrong distances are incorrect

This edge shows
something must

be wrong …

40

Correctness (Part 1)
Theorem:

If the graph has no negative-weight cycle,
then for any vertex v with shortest path
from s consists of k edges, Bellman-Ford
sets d(v) to the correct value after the kth

Relax all (for any ordering of edges in each Relax all)

How to prove ? (By induction)

41

Corollary
Corollary: If there is no negative-weight

cycle, then when Bellman-Ford terminates,
d(v) d(u) + weight(u,v)

for all edge (u,v)

Proof: By previous theorem, d(u) and d(v)
are the length of shortest path from s to
u and v, respectively. Thus, we must have

d(v) length of any path from s to v
 d(v) d(u) + weight(u,v)

42

“Something Wrong”Lemma

Lemma: If there is a negative-weight cycle,
then when Bellman-Ford terminates,

d(v) d(u) + weight(u,v)
for some edge (u,v)

How to prove ? (By contradiction)

43

•Firstly, we know that there is a cycle
C = (v1, v2, …, vk, v1)

whose total weight is negative

•That is, i = 1 to k weight(vi, vi+1) 0

•Now, suppose on the contrary that
d(v) d(u) + weight(u,v)

for all edge (u,v) at termination

Proof

44

•Can we obtain another bound for

i = 1 to k weight(vi, vi+1) ?
•By rearranging, for all edge (u,v)

weight(u,v) d(v) - d(u)

 i = 1 to k weight(vi, vi+1)

i = 1 to k (d(vi) - d(vi+1)) = 0 (why?)

 Contradiction occurs !!

Proof (cont)

45

Correctness (Part 2)

Theorem:
There is a negative-weight cycle in the
input graph if and only if when Bellman-
Ford terminates,

d(v) d(u) + weight(u,v)
for some edge (u,v)

•Combining the previous corollary and
lemma, we have:

