CS4311 Design and Analysis of Algorithms

Lecture 27: Single-Source Shortest-Path

About this lecture

- What is the problem about ?
- Dijkstra's Algorithm [1959]
 - ~ Prim's Algorithm [1957]
- Folklore Algorithm for DAG [???]
- Bellman-Ford Algorithm
 - Discovered by Bellman [1958], Ford [1962]
 - Allowing negative edge weights

Single-Source Shortest Path

- Let G = (V,E) be a weighted graph
 - the edges in G have weights
 - can be directed/undirected
 - can be connected/disconnected
- Let s be a special vertex, called source

Target: For each vertex v, compute the length of shortest path from s to v

Single-Source Shortest Path

• E.g.,

Relax

• A common operation that is used in the three algorithms is called Relax :

when a vertex v can be reached from the source with a certain distance, we examine an outgoing edge, say (v,w), and check if we can improve W Can we improve this?

Can we improve these?

Dijkstra's Algorithm Dijkstra(G, s) For each vertex \mathbf{v}_{i} Mark v as unvisited, and set $d(v) = \infty$; Set d(s) = 0; while (there is unvisited vertex) { v = unvisited vertex with smallest d : Visit v, and Relax all its outgoing edges; return d :

Correctness

Theorem:

The kth vertex closest to the source **s** is selected at the kth step inside the while loop of Dijkstra's algorithm Also, by the time a vertex **v** is selected, d(v) will store the length of the shortest path from **s** to **v**

How to prove ? (By induction)

Proof

- Both statements are true for k = 1;
- Let $v_j = j^{\text{th}}$ closest vertex from s
- Now, suppose both statements are true for k = 1, 2, ..., r-1
- Consider the r^{th} closest vertex v_r
 - If there is no path from s to v_r $\rightarrow d(v_r) = \infty$ is never changed
 - Else, there must be a shortest path from s to v_r ; Let v_t be the vertex immediately before v_r in this path

Proof (cont)

- Then, we have $t \le r-1$ (why??)
- → $d(v_r)$ is set correctly once v_t is selected, and the edge (v_t, v_r) is relaxed (why??)
- \rightarrow After that, $d(v_r)$ is fixed (why??)
- → d(v_r) is correct when v_r is selected ; also, v_r must be selected at the rth step, because no unvisited nodes can have a smaller d value at that time

Thus, the proof of inductive case completes

Performance

- Dijkstra's algorithm is similar to Prim's
- By using Fibonacci Heap,
 - Relax \Leftrightarrow Decrease-Key
 - Pick vertex <> Extract-Min
- Running Time:
 - O(V) Insert/Extract-Min
 - At most O(E) Decrease-Key
 - → Total Time: O(E + V log V)

Finding Shortest Path in DAG We have a faster algorithm for DAG : DAG-Shortest-Path(G, s) Topological Sort G; For each v, set $d(v) = \infty$; Set d(s) = 0; for (k = 1 to |V|) { v = kth vertex in topological order ; Relax all outgoing edges of v ; return d :

Correctness

Theorem:

By the time a vertex v is selected, d(v) will store the length of the shortest path from s to v

How to prove ? (By induction)

Proof

- Let $v_j = j^{th}$ vertex in the topological order
- We will show that $d(v_k)$ is set correctly when v_k is selected, for k = 1, 2, ..., |V|
- When k = 1,

 $v_k = v_1 = \text{leftmost vertex}$ If it is the source, $d(v_k) = 0$ If it is not the source, $d(v_k) = \infty$

→ In both cases, d(v_k) is correct (why?)
 → Base case is correct

Proof (cont)

- Now, suppose the statement is true for k = 1, 2, ..., r-1
- Consider the vertex v_r
 - If there is no path from s to v_r $\rightarrow d(v_r) = \infty$ is never changed
 - Else, we shall use similar arguments as proving the correctness of Dijkstra's algorithm ...

Proof (cont)

- First, let v_t be the vertex immediately before v_r in the shortest path from s to v_r \Rightarrow t \leq r-1
 - → $d(v_r)$ is set correctly once v_t is selected, and the edge (v_t, v_r) is relaxed
 - \rightarrow After that, $d(v_r)$ is fixed
 - \rightarrow d(v_r) is correct when v_r is selected

Thus, the proof of inductive case completes

Performance

- DAG-Shortest-Path selects vertex sequentially according to topological order
 - no need to perform Extract-Min
- We can store the d values of the vertices in a single array → Relax takes O(1) time
- Running Time:
 - Topological sort : O(V + E) time
 - O(V) select, O(E) Relax : O(V + E) time
 - → Total Time: O(V + E)

Handling Negative Weight Edges

 When a graph has negative weight edges, shortest path may not be well-defined

What is the shortest path from s to v?

Handling Negative Weight Edges

The problem is due to the presence of a cycle C, reachable by the source, whose total weight is negative

→ C is called a negative-weight cycle

- How to handle negative-weight edges ??
 - → if input graph is known to be a DAG, DAG-Shortest-Path is still correct
 - For the general case, we can use Bellman-Ford algorithm

Bellman-Ford Algorithm

Bellman-Ford(G, S) // runs in O(VE) time

For each v, set $d(v) = \infty$; Set d(s) = 0;

for (k = 1 to |V|-1)

Relax all edges in G in any order ;

/* check if s reaches a neg-weight cycle */
for each edge (u,v),
 if (d(v) > d(u) + weight(u,v))
 return "something wrong !!";

return d ;

After the 4th Relax all

After checking, we found that there is nothing wrong \rightarrow distances are correct

After the 4th Relax all

This edge shows something must be wrong ...

After checking, we found that something must be wrong \rightarrow distances are incorrect

Correctness (Part 1)

Theorem:

If the graph has no negative-weight cycle, then for any vertex v with shortest path from s consists of k edges, Bellman-Ford sets d(v) to the correct value after the k^{th} Relax all (for any ordering of edges in each Relax all)

How to prove ? (By induction)

Corollary

Corollary: If there is no negative-weight cycle, then when Bellman-Ford terminates, $d(v) \leq d(u) + weight(u,v)$ for all edge (u,v)

Proof: By previous theorem, d(u) and d(v) are the length of shortest path from s to u and v, respectively. Thus, we must have d(v) ≤ length of any path from s to v
→ d(v) ≤ d(u) + weight(u,v)

"Something Wrong" Lemma

Lemma: If there is a negative-weight cycle, then when Bellman-Ford terminates, d(v) > d(u) + weight(u,v)for some edge (u,v)

How to prove ? (By contradiction)

Proof

- Firstly, we know that there is a cycle $C = (v_1, v_2, ..., v_k, v_1)$ whose total weight is negative
- That is, $\sum_{i=1 \text{ to } k} \text{weight}(v_i, v_{i+1}) < 0$
- Now, suppose on the contrary that $d(v) \leq d(u) + weight(u,v)$ for all edge (u,v) at termination

Proof (cont)

- Can we obtain another bound for
- $$\begin{split} &\sum_{i = 1 \text{ to } k} \text{ weight}(v_i, v_{i+1}) ? \\ \bullet \text{ By rearranging, for all edge } (u,v) \\ & \text{ weight}(u,v) \geq d(v) d(u) \end{split}$$

$$\rightarrow \sum_{i=1 \text{ to } k} \text{ weight}(v_i, v_{i+1})$$

- $\geq \sum_{i=1 \text{ to } k} (d(v_i) d(v_{i+1})) = 0 \quad (why?)$
- → Contradiction occurs !!

Correctness (Part 2)

 Combining the previous corollary and lemma, we have:

Theorem:

There is a negative-weight cycle in the input graph if and only if when Bellman-Ford terminates, d(v) > d(u) + weight(u,v)for some edge (u,v)