CS4311
 Design and Analysis of Algorithms

Lecture 27:
Single-Source Shortest-Path

About this lecture

- What is the problem about?
- Dijkstra's Algorithm [1959]
- ~Prim's Algorithm [1957]
- Folklore Algorithm for DAG [???]
- Bellman-Ford Algorithm
- Discovered by Bellman [1958], Ford [1962]
- Allowing negative edge weights

Single-Source Shortest Path

- Let $G=(V, E)$ be a weighted graph
- the edges in G have weights
- can be directed/undirected
- can be connected/disconnected
- Let s be a special vertex, called source

Target: For each vertex v, compute the length of shortest path from s to v

Single-Source Shortest Path

- E.g.,

Relax

- A common operation that is used in the three algorithms is called Relax : when a vertex v can be reached from the source with a certain distance, we examine an outgoing edge, say (v, w), and check if we can improve $w \quad$ Can we improve this?
- E.g.,

Can we improve these?

Dijkstra's Algorithm

Dijkstra(G, s)
For each vertex v,
Mark vas unvisited, and set $\mathrm{d}(\mathrm{v})=\infty$;
Set d(s)=0;
while (there is unvisited vertex) \{
$v=$ unvisited vertex with smallest d;
Visit v , and Relax all its outgoing edges;
\}
return d:

Example

Relax

Correctness

Theorem:

The $\mathrm{k}^{\text {th }}$ vertex closest to the source s is selected at the $k^{\text {th }}$ step inside the while loop of Dijkstra's algorithm
Also, by the time a vertex v is selected, $d(v)$ will store the length of the shortest path from s to v

How to prove? (By induction)

Proof

- Both statements are true for $k=1$;
- Let $v_{j}=j^{\text {th }}$ closest vertex from s
- Now, suppose both statements are true for $k=1,2, \ldots, r-1$
- Consider the $r^{\text {th }}$ closest vertex v_{r}
- If there is no path from s to v_{r} $\rightarrow \mathrm{d}\left(\mathrm{v}_{\mathrm{r}}\right)=\infty$ is never changed
- Else, there must be a shortest path from s to v_{r} : Let v_{t} be the vertex immediately before v_{r} in this path

Proof (cont)

- Then, we have $t \leq r-1$ (why??)
$\rightarrow d\left(v_{r}\right)$ is set correctly once v_{+}is selected, and the edge $\left(v_{t}, v_{r}\right)$ is relaxed (why??)
\rightarrow After that, $d\left(v_{r}\right)$ is fixed (why??)
$\rightarrow d\left(v_{r}\right)$ is correct when v_{r} is selected; also, v_{r} must be selected at the $r^{\text {th }}$ step, because no unvisited nodes can have a smaller d value at that time

Thus, the proof of inductive case completes

Performance

- Dijkstra's algorithm is similar to Prim's
- By using Fibonacci Heap,
- Relax \Leftrightarrow Decrease-Key
- Pick vertex \Leftrightarrow Extract-Min
- Running Time:
- O(V) Insert/Extract-Min
- At most O (E) Decrease-Key
\rightarrow Total Time: $O(E+V \log V)$

Finding Shortest Path in DAG

We have a faster algorithm for DAG:
DAG-Shortest-Path(G, s)
Topological Sort G:
For each v, set $d(v)=\infty$; Set $d(s)=0$;
for ($k=1$ to $|V|$) \{
$v=k^{\text {th }}$ vertex in topological order :
Relax all outgoing edges of v : \} return d:

Example

Topological
Sort

Example

Example

Example

Example

Process this node

Example

Example

Correctness

Theorem:

By the time a vertex v is selected, $d(v)$ will store the length of the shortest path from s to v

How to prove? (By induction)

Proof

- Let $v_{j}=j^{\text {th }}$ vertex in the topological order
- We will show that $d\left(v_{k}\right)$ is set correctly when v_{k} is selected, for $k=1,2, \ldots,|V|$
- When $k=1$,
$v_{k}=v_{1}=$ leftmost vertex
If it is the source, $d\left(v_{k}\right)=0$
If it is not the source, $d\left(v_{k}\right)=\infty$
\rightarrow In both cases, $d\left(v_{k}\right)$ is correct (why?)
\rightarrow Base case is correct

Proof (cont)

- Now, suppose the statement is true for $k=1,2, \ldots, r-1$
- Consider the vertex v_{r}
- If there is no path from s to v_{r}
$\rightarrow \mathrm{d}\left(\mathrm{v}_{\mathrm{r}}\right)=\infty$ is never changed
- Else, we shall use similar arguments as proving the correctness of Dijkstra's algorithm ...

Proof (cont)

- First, let v_{t} be the vertex immediately before v_{r} in the shortest path from s to v_{r}
$\rightarrow t \leq r-1$
$\rightarrow d\left(v_{r}\right)$ is set correctly once v_{+}is selected, and the edge $\left(v_{t}, v_{r}\right)$ is relaxed
\rightarrow After that, $d\left(v_{r}\right)$ is fixed
$\Rightarrow d\left(v_{r}\right)$ is correct when v_{r} is selected
Thus, the proof of inductive case completes

Performance

- DAG-Shortest-Path selects vertex sequentially according to topological order
- no need to perform Extract-Min
- We can store the d values of the vertices in a single array \rightarrow Relax takes O(1) time
- Running Time:
- Topological sort : $O(V+E)$ time
- $O(V)$ select, $O(E)$ Relax : $O(V+E)$ time
\rightarrow Total Time: $O(V+E)$

Handling Negative Weight Edges

- When a graph has negative weight edges, shortest path may not be well-defined
E.g.,

What is the shortest path from s to v ?

Handling Negative Weight Edges

- The problem is due to the presence of a cycle C, reachable by the source, whose total weight is negative
$\rightarrow C$ is called a negative-weight cycle
- How to handle negative-weight edges??
\rightarrow if input graph is known to be a DAG, DAG-Shortest-Path is still correct
\rightarrow For the general case, we can use Bellman-Ford algorithm

Bellman-Ford Algorithm

Bellman-Ford $(G, s) / /$ runs in $O(V E)$ time
For each v, set $d(v)=\infty$; Set $d(s)=0$; for ($k=1$ to $|V|-1$)

Relax all edges in G in any order :
/* check if s reaches a neg-weight cycle */ for each edge (u, v),
if $(d(v)>d(u)+$ weight $(u, v))$ return "something wrong !!" :
return d;

Example 1

- Relax all

Example 1

After the 4th Relax all

After checking, we found that there is nothing wrong \rightarrow distances are correct

Example 2

- Relax all

Example 2

After the 4th Relax all

After checking, we found that something must be wrong \rightarrow distances are incorrect

Correctness (Part 1)

Theorem:

If the graph has no negative-weight cycle, then for any vertex v with shortest path from s consists of k edges, Bellman-Ford sets $d(v)$ to the correct value after the $k^{\text {th }}$ Relax all (for any ordering of edges in each Relax all)

How to prove? (By induction)

Corollary

Corollary: If there is no negative-weight cycle, then when Bellman-Ford terminates,

$$
d(v) \leq d(u)+\text { weight }(u, v)
$$

for all edge (u,v)
Proof: By previous theorem, $d(u)$ and $d(v)$ are the length of shortest path from s to u and v, respectively. Thus, we must have $d(v) \leq$ length of any path from s to v
$\rightarrow \mathrm{d}(\mathrm{v}) \leq \mathrm{d}(\mathrm{u})+$ weight (u, v)

"Something Wrong" Lemma

Lemma: If there is a negative-weight cycle, then when Bellman-Ford terminates,

$$
d(v)>d(u)+\text { weight }(u, v)
$$

for some edge (u, v)
How to prove? (By contradiction)

Proof

- Firstly, we know that there is a cycle

$$
C=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{1}\right)
$$

whose total weight is negative

- That is, $\sum_{i=1 \text { tok }}$ weight $\left(v_{i}, v_{i+1}\right)<0$
- Now, suppose on the contrary that

$$
d(v) \leq d(u)+\text { weight }(u, v)
$$

for all edge (u, v) at termination

Proof (cont)

- Can we obtain another bound for

$$
\sum_{i=1 \text { tok }} \text { weight }\left(v_{i}, v_{i+1}\right) \text { ? }
$$

- By rearranging, for all edge (u,v)

$$
\text { weight }(u, v) \geq d(v)-d(u)
$$

$\Rightarrow \quad \sum_{i=1 \text { tok }}$ weight $\left(v_{i}, v_{i+1}\right)$

$$
\geq \sum_{i=1 \text { tok }}\left(d\left(v_{i}\right)-d\left(v_{i+1}\right)\right)=0 \quad \text { (why?) }
$$

\rightarrow Contradiction occurs !!

Correctness (Part 2)

- Combining the previous corollary and lemma, we have:

Theorem:
There is a negative-weight cycle in the input graph if and only if when BellmanFord terminates,

$$
d(v)>d(u)+\text { weight }(u, v)
$$

for some edge (u,v)

