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CS4311
Design and Analysis of

Algorithms

Lecture 26: Minimum Spanning Tree
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About this lecture
•What is a Minimum Spanning Tree?
•Some History

•The Greedy Choice Lemma
•Kruskal’s Algorithm
•Prim’s Algorithm
•Borůvka's Algorithm
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•Let G = (V,E) be an undirected, connected
graph

•A spanning tree of G is a tree, using only
edges in E, that connects all vertices of G

Minimum Spanning Tree
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•Sometimes, the edges in G have weights
• weight  cost of using the edge

•A minimum spanning tree (MST) of a
weighted G is a spanning tree such that
the sum of edge weights is minimized

Minimum Spanning Tree
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Total cost = 4 + 8 + 7 + 9 + 2 + 4 + 1 + 2 = 37
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•MST of a graph may not be unique

Minimum Spanning Tree
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Some History
• Borůvka [1926] : First algorithm

• for electrical coverage of Moravia

• Kruskal [1956] : Kruskal’s algorithm
• Jarník [1930], Prim [1957] : Prim’s algorithm
• Fredman-Tarjan [1987] : O(E log*(V)) time
• Gabow et al [1986]: O(E log log*(V) time
• Chazelle [1999]: O(E (E,V)) time

Remark: log* = iterated log, (m,n) = inverse Ackermann
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Greedy Choice Lemma
•Suppose all edge weights are distinct

•If not, we give an arbitrary ordering
among equal-weight edges

•E.g.,
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Give an arbitrary ordering among these two edges,
so that one costs “fewer”than the other
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Greedy Choice Lemma
•Let ev to be the cheapest edge adjacent

to v, for each vertex v
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Theorem: The minimum spanning tree of G
contains every ev



9

Proof
•Recall that all edge weights are distinct
•Suppose on the contrary that MST of G

does not contain some edge ev = (u,v)
•Let T = optimal MST of G
•By adding ev = (u,v) to T, we obtain a cycle

u, v, w, …, u [why??]
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Proof
•By our choice of ev ,

we must have weight
of (u,v) cheaper than
weight of (v,w) to T

u
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w

•If we delete (v,w) and
include ev, we obtain a
spanning tree cheaper
than T
 contradiction !!
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Optimal Substructure
Let E’= a set of edges which are known to

be in an MST of G = (V,E)
Let G* = the graph obtained by contracting

each component of G’= (V,E’) into a
single vertex

Let T* be (the edges of) an MST of G*

Theorem: T* [ E’is an MST of G

Proof: By contradiction
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Example
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Kruskal’s Algorithm

Kruskal-MST(G)
•Find the cheapest (non-self-loop) edge (u,v)

in G
•Contract (u,v) to obtain G*
•Kruskal-MST(G*)
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Performance
•Kruskal’s algorithm can be implemented

efficiently using Union-Find :
•First, sort edges according to the weights
•At each step, pick the cheapest edge

•If end-points are from different
component, we perform Union (and
include this edge to the MST)

 Time for Union-Find = O(E(E))

Total Time: O(E log E + E (E)) = O(E log V)
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Prim’s Algorithm

Prim-MST(G, u)
•Set u as the source vertex
•Find the cheapest (non-self-loop) edge

from u, say, (u,v)
•Merge v into u to obtain G*
•Prim-MST(G*, u)
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Performance
•Prim’s algorithm can be implemented

efficiently using Binary Heap H:
•First, insert all edges adjacent to u into H
•At each step, extract the cheapest edge

•If an end-point, say v, is not in MST,
include this edge and v to MST
•Insert all edges adjacent to v into H

•At most O(E) Insert/Extract-Min
 Total Time: O(E log E) = O(E log V)
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Performance (speed-up)
•In fact, Prim’s algorithm can be sped up

using a Fibonacci Heap F

•Instead of keeping edges in the heap,
we keep distinct vertices

• This avoids (E) Extract-Min in the worst case

•At the beginning, each vertex (except source)
is inserted into the heap, with key = 
• key represents distance between u and the vertex
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Performance (speed-up)
•Next, we scan all adjacent edges in u and

update the distance of the corresponding
vertices (using Decrease-Key)

 the vertex with the smallest key must
be joined to u with the cheapest edge

(since key = distance from u)

•So, we extract the minimum vertex, scan
all its adjacent edges, and update
corresponding vertices …
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Performance (speed-up)
•The process is repeated until all vertices

in the heap are gone
 MST obtained !

•Running Time:
•O(V) Insert/Extract-Min
•At most O(E) Decrease-Key
 Total Time: O(E + V log V)
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Borůvka's Algorithm

Borůvka-MST(G)
•Find cheapest adjacent edge ev for

each vertex v
•Contract all ev to obtain G*
•Borůvka-MST(G*)
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Performance
•In Step 1 of Borůvka’s algorithm, each

vertex v needs to find ev

•can be done in O(E) time, without
sorting of edges

•In Step 2, when all ev are contracted, we
need to re-label the end-points of the
edges so that they refer to the new
vertices in G*
•can be done in O(E) time, using DFS to

find connected components
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Performance
•After Step 2, each new vertex of G*

represents at least two vertices of G
•#vertices in G* V/2

 In general, if Borůvka-MST() is called
for k iterations,

#vertices in G* V/2k

 At most O(log V) iterations

Total time: O(E log V) In practice, #iterations can
be much smaller than O(log V)



40

Modifying Borůvka
•Now, suppose we run Borůvka-MST() for

only k = log log V iterations

#vertices in G* V/2log log V = V/log V
#edges in G* E

•Then, we switch back to Prim
•Running Time:

O(E log log V) + O( E + (V/log V) log V)

= O(E log log V)  could be better than both !!

Borůvka Prim


