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CS4311
Design and Analysis of

Algorithms

Lecture 23:
Elementary Graph Algorithms II
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About this lecture
•Depth First Search

•DFS Tree and DFS Forest

•Properties of DFS
•Parenthesis theorem (very important)
•White-path theorem (very useful)
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Depth First Search (DFS)
•An alternative algorithm to find all

vertices reachable from a particular
source vertex s

•Idea:
Explore a branch as far as possible
before exploring another branch

•Easily done by recursion or stack
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The DFS Algorithm
DFS(u)
{ Mark u as discovered ;

while (u has unvisited neighbor v)
DFS(v);

Mark u as finished ;
}

The while-loop explores a
branch as far as possible
before the next branch
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Example (s = source)
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Example (s = source)

Done when s is
discovered

The directed edges form
a tree that contains all
nodes reachable from s

Called DFS tree of s
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Generalization
•Just like BFS, DFS may not visit all the

vertices of the input graph G, because :
• G may be disconnected
• G may be directed, and there is no

directed path from s to some vertex

•In most application of DFS (as a subroutine) ,
once DFS tree of s is obtained, we will
continue to apply DFS algorithm on any
unvisited vertices …



12

Generalization (Example)
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Generalization (Example)

Result : a collection of rooted trees
called DFS forest
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Performance

•Since no vertex is discovered twice, and
each edge is visited at most twice (why?)

 Total time: O(|V|+|E|)

•As mentioned, apart from recursion, we
can also perform DFS using a LIFO stack
(Do you know how?)



20

Who will be in the same tree ?
•Because we can only explore branches in

an unvisited node
 DFS(u) may not contain all nodes

reachable by u in its DFS tree
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E.g, in the previous run,
v can reach r, s, w, x
but v ’s tree does not
contain any of them
Can we determine who will be in the same tree ?
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Who will be in the same tree ?
•Yes, we will soon show that by white-path

theorem, we can determine who will be in
the same tree as v at the time when DFS
is performed on v

•Before that, we will define the discovery
time and finishing time for each node, and
show interesting properties of them
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Discovery and Finishing Times
•When the DFS algorithm is run, let us

consider a global time such that the time
increases one unit :
•when a node is discovered, or
•when a node is finished

(i.e., finished exploring all unvisited neighbors)

•Each node u records :
d(u) = the time when u is discovered, and
f(u) = the time when u is finished
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Discovery and Finishing Times

In our first example
(undirected graph)
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Discovery and Finishing Times
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Nice Properties
Lemma: For any node u, d(u) f(u)

Theorem (Parenthesis Theorem):
Let u and v be two nodes with d(u) d(v) .
Then, either
1. d(u) d(v) f(v) f(u) [contain], or
2. d(u) f(u) d(v) f(v) [disjoint]

Lemma: For nodes u and v,
d(u), d(v), f(u), f(v) are all distinct
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Proof of Parenthesis Theorem
•Consider the time when v is discovered
•Since u is discovered before v, there are

two cases concerning the status of u :

•Case 1: (u is not finished)
This implies v is a descendant of u
 f(v) f(u) (why?)

•Case 2: (u is finished)
 f(u) d(v)
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Corollary
Corollary:

v is a (proper) descendant of u
if and only if

d(u) d(v) f(v) f(u)

Proof: v is a (proper) descendant of u
 d(u) d(v) and f(v) f(u)
 d(u) d(v) f(v) f(u)
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White-Path Theorem
Theorem: By the time when DFS is

performed on u, for any way DFS is done,
the descendants of u are the same, and
they are exactly those nodes reachable by
u with unvisited (white) nodes only

E.g.,
If we perform DFS(w)

now, will the descendant
of w always be the same

set of nodes?
v
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Proof (Part 1)
•Suppose that v is a descendant of u

Let P = (u, w1, w2, …, wk, v) be the directed
path from u to v in DFS tree of u

Then, apart from u, each node on P must
be discovered after u
 They are all unvisited by the time we

perform DFS on u
 Thus, at this time, there exists a path

from u to v with unvisited nodes only
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Proof (Part 2)
•So, every descendant of u is reachable

from u with unvisited nodes only

•To complete the proof, it remains to show
the converse :

Any node reachable from u with unvisited
nodes only becomes u ’s descendant

is also true
(We shall prove this by contradiction)
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Proof (Part 2)
•Suppose on contrary the converse is false
•Then, there exists some v, reachable

from u with unvisited nodes only, does not
become u ’s descendant
•If more than one choice of v, let v be

one such vertex closest to u

 d(u) f(u) d(v) f(v) …EQ.1
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Proof (Part 2)
•Let P = (u, w1, w2, …, wk, v) be any path

from u to v using unvisited nodes only
•By our choice of v (closest one), all w1, w2, …,

wk become u ’s descendants

•This implies:
d(u) d(wk) f(wk) f(u)

Handle special case:
when u = wk

•Combining with EQ.1, we have
d(wk) f(wk) d(v) f(v)
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Proof (Part 2)
•However, since there is an edge (no matter

undirected or directed) from wk to v,
if d(wk) d(v) , then we must have

d(v) f(wk) …(why??)

•Consequently, it contradicts with :
d(wk) f(wk) d(v) f(v)

 Proof completes


