
1

CS4311
Design and Analysis of

Algorithms

Lecture 23:
Elementary Graph Algorithms II

2

About this lecture
•Depth First Search

•DFS Tree and DFS Forest

•Properties of DFS
•Parenthesis theorem (very important)
•White-path theorem (very useful)

3

Depth First Search (DFS)
•An alternative algorithm to find all

vertices reachable from a particular
source vertex s

•Idea:
Explore a branch as far as possible
before exploring another branch

•Easily done by recursion or stack

4

The DFS Algorithm
DFS(u)
{ Mark u as discovered ;

while (u has unvisited neighbor v)
DFS(v);

Mark u as finished ;
}

The while-loop explores a
branch as far as possible
before the next branch

5

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

6

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

7

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

8

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

9

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

10

Example (s = source)

Done when s is
discovered

The directed edges form
a tree that contains all
nodes reachable from s

Called DFS tree of s

v

r s

w x

t u

y

v

r s

w x

t u

y

11

Generalization
•Just like BFS, DFS may not visit all the

vertices of the input graph G, because :
• G may be disconnected
• G may be directed, and there is no

directed path from s to some vertex

•In most application of DFS (as a subroutine) ,
once DFS tree of s is obtained, we will
continue to apply DFS algorithm on any
unvisited vertices …

12

Generalization (Example)

v

r s

w x

t u

y

Suppose the input graph is directed

13

Generalization (Example)

v

r s

w x

t u

y

1. After applying DFS on s

14

Generalization (Example)

v

r s

w x

t u

y

2. Then, after applying DFS on t

15

Generalization (Example)

v

r s

w x

t u

y

3. Then, after applying DFS on y

16

Generalization (Example)

v

r s

w x

t u

y

4. Then, after applying DFS on r

17

Generalization (Example)

v

r s

w x

t u

y

5. Then, after applying DFS on v

18

Generalization (Example)

Result : a collection of rooted trees
called DFS forest

v

r s

w x

t u

y

19

Performance

•Since no vertex is discovered twice, and
each edge is visited at most twice (why?)

 Total time: O(|V|+|E|)

•As mentioned, apart from recursion, we
can also perform DFS using a LIFO stack
(Do you know how?)

20

Who will be in the same tree ?
•Because we can only explore branches in

an unvisited node
 DFS(u) may not contain all nodes

reachable by u in its DFS tree

v

r s

w x

t u

y

E.g, in the previous run,
v can reach r, s, w, x
but v ’s tree does not
contain any of them
Can we determine who will be in the same tree ?

21

Who will be in the same tree ?
•Yes, we will soon show that by white-path

theorem, we can determine who will be in
the same tree as v at the time when DFS
is performed on v

•Before that, we will define the discovery
time and finishing time for each node, and
show interesting properties of them

22

Discovery and Finishing Times
•When the DFS algorithm is run, let us

consider a global time such that the time
increases one unit :
•when a node is discovered, or
•when a node is finished

(i.e., finished exploring all unvisited neighbors)

•Each node u records :
d(u) = the time when u is discovered, and
f(u) = the time when u is finished

23

Discovery and Finishing Times

In our first example
(undirected graph)

v

r s

w x

t u

y

1/1612/15

13/14 2/11

4/9 5/8

3/10 6/7

24

Discovery and Finishing Times

v

r s

w x

t u

y

1/613/14

15/16 2/5

7/10 8/9

3/4 11/12

In our second example
(directed graph)

25

Nice Properties
Lemma: For any node u, d(u) f(u)

Theorem (Parenthesis Theorem):
Let u and v be two nodes with d(u) d(v) .
Then, either
1. d(u) d(v) f(v) f(u) [contain], or
2. d(u) f(u) d(v) f(v) [disjoint]

Lemma: For nodes u and v,
d(u), d(v), f(u), f(v) are all distinct

26

Proof of Parenthesis Theorem
•Consider the time when v is discovered
•Since u is discovered before v, there are

two cases concerning the status of u :

•Case 1: (u is not finished)
This implies v is a descendant of u
 f(v) f(u) (why?)

•Case 2: (u is finished)
 f(u) d(v)

27

Corollary
Corollary:

v is a (proper) descendant of u
if and only if

d(u) d(v) f(v) f(u)

Proof: v is a (proper) descendant of u
 d(u) d(v) and f(v) f(u)
 d(u) d(v) f(v) f(u)

28

White-Path Theorem
Theorem: By the time when DFS is

performed on u, for any way DFS is done,
the descendants of u are the same, and
they are exactly those nodes reachable by
u with unvisited (white) nodes only

E.g.,
If we perform DFS(w)

now, will the descendant
of w always be the same

set of nodes?
v

r s

w x

t u

y

29

Proof (Part 1)
•Suppose that v is a descendant of u

Let P = (u, w1, w2, …, wk, v) be the directed
path from u to v in DFS tree of u

Then, apart from u, each node on P must
be discovered after u
 They are all unvisited by the time we

perform DFS on u
 Thus, at this time, there exists a path

from u to v with unvisited nodes only

30

Proof (Part 2)
•So, every descendant of u is reachable

from u with unvisited nodes only

•To complete the proof, it remains to show
the converse :

Any node reachable from u with unvisited
nodes only becomes u ’s descendant

is also true
(We shall prove this by contradiction)

31

Proof (Part 2)
•Suppose on contrary the converse is false
•Then, there exists some v, reachable

from u with unvisited nodes only, does not
become u ’s descendant
•If more than one choice of v, let v be

one such vertex closest to u

 d(u) f(u) d(v) f(v) …EQ.1

32

Proof (Part 2)
•Let P = (u, w1, w2, …, wk, v) be any path

from u to v using unvisited nodes only
•By our choice of v (closest one), all w1, w2, …,

wk become u ’s descendants

•This implies:
d(u) d(wk) f(wk) f(u)

Handle special case:
when u = wk

•Combining with EQ.1, we have
d(wk) f(wk) d(v) f(v)

33

Proof (Part 2)
•However, since there is an edge (no matter

undirected or directed) from wk to v,
if d(wk) d(v) , then we must have

d(v) f(wk) …(why??)

•Consequently, it contradicts with :
d(wk) f(wk) d(v) f(v)

 Proof completes

