CS4311
 Design and Analysis of Algorithms

Lecture 23:
Elementary Graph Algorithms II

About this lecture

- Depth First Search
- DFS Tree and DFS Forest
- Properties of DFS
- Parenthesis theorem (very important)
- White-path theorem (very useful)

Depth First Search (DFS)

- An alternative algorithm to find all vertices reachable from a particular source vertexs
- Idea:

Explore a branch as far as possible before exploring another branch

- Easily done by recursion or stack

The DFS Algorithm

DFS(u)
\{ Marku as discovered : while (u has unvisited neighbor v) DFS(v);
Mark u as finished :
\}
The while-loop explores a branch as far as possible before the next branch

Example (s = source)

Example (s = source)

finished
discovered
$\rightarrow \quad \begin{aligned} & \text { direction of edge when } \\ & \text { new node is discovered }\end{aligned}$

Example (s = source)

finished
discovered
direction of edge when new node is discovered

Example (s = source)

finished
discovered
$\rightarrow \quad \begin{aligned} & \text { direction of edge when } \\ & \text { new node is discovered }\end{aligned}$

Example (s = source)

finished
discovered
$\rightarrow \quad \begin{aligned} & \text { direction of edge when } \\ & \text { new node is discovered }\end{aligned}$

Example (s = source)

Done when s is discovered

The directed edges form a tree that contains all nodes reachable from s

Called DFS tree of s

Generalization

- Just like BFS, DFS may not visit all the vertices of the input graph G, because :
- G may be disconnected
- G may be directed, and there is no directed path from s to some vertex
- In most application of DFS (as a subroutine), once DFS tree of s is obtained, we will continue to apply DFS algorithm on any unvisited vertices

Generalization (Example)

Suppose the input graph is directed

Generalization (Example)

1. After applying DFS on s

Generalization (Example)

2. Then, after applying DFS on \dagger

Generalization (Example)

3. Then, after applying DFS on y

Generalization (Example)

4. Then, after applying DFS on r

Generalization (Example)

5. Then, after applying DFS on v

Generalization (Example)

Result : a collection of rooted trees called DFS forest

Performance

- Since no vertex is discovered twice, and each edge is visited at most twice (why?)
\rightarrow Total time: $O(|V|+|E|)$
- As mentioned, apart from recursion, we can also perform DFS using a LIFO stack (Do you know how?)

Who will be in the same tree?

- Because we can only explore branches in an unvisited node
\rightarrow DFS(u) may not contain all nodes reachable by u in its DFS tree
E.g, in the previous run, v can reach r, s, w, x but v's tree does not contain any of them

Can we determine who will be in the same tree?

Who will be in the same tree?

- Yes, we will soon show that by white-path theorem, we can determine who will be in the same tree as v at the time when DFS is performed on v
- Before that, we will define the discovery time and finishing time for each node, and show interesting properties of them

Discovery and Finishing Times

- When the DFS algorithm is run, let us consider a global time such that the time increases one unit :
- when a node is discovered, or
- when a node is finished
(i.e., finished exploring all unvisited neighbors)
- Each node u records : $d(u)=$ the time when u is discovered, and $f(u)=$ the time when u is finished

Discovery and Finishing Times

In our first example (undirected graph)

Discovery and Finishing Times

In our second example (directed graph)

Nice Properties

Lemma: For any node $u, d(u)<f(u)$
Lemma: For nodes u and v,

$d(u), d(v), f(u), f(v)$ are all distinct

Theorem (Parenthesis Theorem):
Let u and v be two nodes with $\mathrm{d}(\mathrm{u})<\mathrm{d}(\mathrm{v})$. Then, either
1.
$d(u)<d(v)$
2. $\mathrm{d}(\mathrm{u})<\mathrm{f}(\mathrm{u})<\mathrm{d}(\mathrm{v})<\mathrm{f}(\mathrm{v}) \quad$ [disjoint]

Proof of Parenthesis Theorem

- Consider the time when v is discovered
- Since u is discovered before v, there are two cases concerning the status of u :
- Case 1: (u is not finished)

This implies v is a descendant of u
$\rightarrow f(v)<f(u)$
(why?)

- Case 2: (u is finished)
$\rightarrow f(u)<d(v)$

Corollary

Corollary: v is a (proper) descendant of u

$$
\begin{aligned}
& \text { if and only if } \\
& d(u)<d(v)<f(v)<f(u)
\end{aligned}
$$

Proof: $\quad v$ is a (proper) descendant of u
$\Leftrightarrow d(u)<d(v)$ and $f(v)<f(u)$
$\Leftrightarrow d(u)<d(v)<f(v)<f(u)$

White-Path Theorem

Theorem: By the time when DFS is performed on u, for any way DFS is done, the descendants of u are the same, and they are exactly those nodes reachable by u with unvisited (white) nodes only
E.g.,

If we perform DFS(w) now, will the descendant of w always be the same set of nodes?

Proof (Part 1)

- Suppose that v is a descendant of u Let $P=\left(u, w_{1}, w_{2}, \ldots, w_{k}, v\right)$ be the directed path from u to v in DFS tree of u
Then, apart from u, each node on P must be discovered after u
\rightarrow They are all unvisited by the time we perform DFS on u
\rightarrow Thus, at this time, there exists a path from u to v with unvisited nodes only

Proof (Part 2)

- So, every descendant of u is reachable from u with unvisited nodes only
- To complete the proof, it remains to show the converse:

Any node reachable from u with unvisited nodes only becomes u's descendant
is also true
(We shall prove this by contradiction)

Proof (Part 2)

- Suppose on contrary the converse is false
- Then, there exists some v, reachable from u with unvisited nodes only, does not become u's descendant
- If more than one choice of v, let v be one such vertex closest to u
$\Rightarrow \quad d(u)<f(u)<d(v)<f(v) \quad .$. EQ. 1

Proof (Part 2)

- Let $P=\left(u, w_{1}, w_{2}, \ldots, w_{k}, v\right)$ be any path from u to v using unvisited nodes only
- By our choice of v (closest one), all w_{1}, w_{2}, \ldots, w_{k} become u's descendants Handle special case:
- This implies:

$$
d(u) \leqq d\left(w_{k}\right)<f\left(w_{k}\right) \leqq f(u)
$$

- Combining with EQ.1, we have

$$
d\left(w_{k}\right)<f\left(w_{k}\right)<d(v)<f(v)
$$

Proof (Part 2)

- However, since there is an edge (no matter undirected or directed) from w_{k} to v, if $d\left(w_{k}\right)<d(v)$, then we must have

$$
d(v)<f\left(w_{k}\right)
$$

... (why??)

- Consequently, it contradicts with:

$$
d\left(w_{k}\right)<f\left(w_{k}\right)<d(v)<f(v)
$$

\rightarrow Proof completes

