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Design and Analysis of
Algorithms

Lecture 23:
Elementary Graph Algorithms IT



About this lecture

» Depth First Search

- DFS Tree and DFS Forest

* Properties of DFS

* Parenthesis theorem (very important)
+ White-path theorem (very useful)



Depth First Search (DFS)

» An alternative algorithm to find all
vertices reachable from a particular
source vertex s

+ Tdea:

Explore a branch as far as possible
before exploring another branch

» Easily done by recursion or stack



The DFS Algorithm

DFS(u)
{  Mark u as discovered ;
while (u has unvisited neighbor v)
DFS(v);
Mark u as finished ;

The while-loop explores a
branch as far as possible
before the next branch
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Example (s = source)
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Example (s = source)
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Example (s = source)
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Example (s = source)
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Example (s = source)
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Example (s = source)
r S T u
¢ & o

4 9
> ¢

Done when s is
discovered

The directed edges form
a tree that contains all
hodes reachable from s

Called DFS tree of s
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Generalization

» Just like BFS, DFS may not visit all the
vertices of the input graph G, because :

G may be disconnected

G may be directed, and there is no
directed path from s to some vertex

* In most application of DFS (as a subroutine)
once DFS tree of s is obtained, we will
continue to apply DFS algorithm on any
unvisited vertices ..
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Generalization (Example)

Suppose the input graph is directed
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Generalization (Example)

1. After applying DFSon's
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Generalization (Example)

2. Then, after applying DFS on t
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Generalization (Example)

3. Then, after applying DFS ony
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Generalization (Example)

4. Then, after applying DFS onr
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Generalization (Example)

5. Then, after applying DFS on v
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Generalization (Example)

Result : a collection of rooted trees
called DFS forest
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Performance

- Since no vertex is discovered twice, and

each edge is visited at most twice (why?)
= Total time: O(|V|+|E|)

» As mentioned, apart from recursion, we
can also perform DFS using a LIFO stack

(Do you know how?)
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Who will be in the same tree ?

Because we can only explore branches in
an unvisited node

= DFS(u) may not contain all nodes
reachable by u in its DFS tree

E.g, in the previousrun, r s 4 U
vcanreachr,s,w,x 4 4
but v's tree does not @ ® O
contain any of them v.oowoox Y

Can we determine who will be in the same tree ?



Who will be in the same tree ?

+ Yes, we will soon show that by white-path
theorem, we can determine who will be in
the same tree as v at the time when DFS
is performed on v

+ Before that, we will define the discovery
time and finishing time for each node, and
show interesting properties of them
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Discovery and Finishing Times

* When the DFS algorithm is run, let us
consider a global time such that the time
Increases one unit :

- when a node is discovered, or
- when a node is finished
(i.e., finished exploring all unvisited neighbors)

- Each node u records :

d(u) = the time when u is discovered, and
f(u) = the time when u is finished
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Discovery and Finishing Times
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In our first example
(undirected graph)
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Discovery and Finishing Times
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In our second example
(directed graph)
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Nice Properties
Lemma: For any node u, d(u) < f(u)

Lemma: For nodes uand v,
d(u), d(v), f(u), f(v) are all distinct

Theorem (Parenthesis Theorem):
Let u and v be two nodes with d(u) < d(v) .
Then, either
1. d(u) <d(v) < f(v) < f(u) I[contain], or
2. d(u) <f(u)<d(v)<f(v) [disjoint]

25



Proof of Parenthesis Theorem

+ Consider the time when v is discovered

+ Since u is discovered before v, there are
two cases concerning the status of u:

+ Case 1: (u is not finished)
This implies v is a descendant of u

= f(v) < f(u) (why?)

+ Case 2: (u is finished)
= f(u) <d(v)
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Corollary

Corollary:
v is a (proper) descendant of u
if and only if
d(u) < d(v) < f(v) < f(u)
Proof: v is a (proper) descendant of u

< d(u) <d(v) and f(v) < f(u)
< d(u) < d(v) < f(v) < f(u)
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White-Path Theorem

Theorem: By the time when DFS is

performed on u, for any way DFS is done,
the descendants of u are the same, and
they are exactly those nodes reachable by
u with unvisited (white) hodes only

P S T u

07 i O If we perform DFS(w)
‘ now, will the descendant
O O of w always be the same

U/ set of nodes?
X Y
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Proof (Part 1)

+ Suppose that v is a descendant of u

Let P = (u, wy, Wy, ..., Wy, v) be the directed
path from u fo v in DFS tree of u

Then, apart from u, each node on P must
be discovered after u

= They are all unvisited by the time we
perform DFS onu

= Thus, at this time, there exists a path
from u to v with unvisited nodes only
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Proof (Part 2)

+ S0, every descendant of u is reachable
from u with unvisited nodes only

*+ To complete the proof, it remains to show
the converse :

Any node reachable from u with unvisited
nodes only becomes u 's descendant

is also true
(We shall prove this by contradiction)
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Proof (Part 2)

» Suppose on contrary the converse is false

- Then, there exists some v, reachable

from u with unvisited nodes only, does not
become u ‘s descendant

- If more than one choice of v, let v be
onhe such vertex closest to u

> 4 d(u) < f(u) <d(v) < f(v) ..EQ.1
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Proof (Part 2)

+ Let P=(u, w;, wy, ..., w, v) be any path
from u to v using unvisited nodes only

» By our choice of v (closest one), all wy, w,, ...
w, become u ‘s descendants o
Handle special case:

when u = w,
» This implies: /

d(u) (=)d(w,) < f(w@@f(u)

»+ Combining with EQ.1, we have
d(w,) < f(w,) < d(v) < f(v)
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Proof (Part 2)

+ However, since there is an edge (no matter
undirected or directed) from w, To v,

if d(w,)<d(v), then we must have
d(v) < f(w,) .. (why??)

» Consequently, it contradicts with :
d(w,) < f(w,) < d(v) < f(v)

=> Proof completes
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