CS4311
 Design and Analysis of Algorithms

Lecture 22:
Elementary Graph Algorithms I

About this lecture

- Representation of Graph
- Adjacency List, Adjacency Matrix
- Breadth First Search

Graph

undirected

directed

Adjacency List (1)

- For each vertex u, store its neighbors in a linked list

Adjacency List (2)

- For each vertex u, store its neighbors in a linked list

Adjacency List (3)

- Let $G=(V, E)$ be an input graph
- Using Adjacency List representation:
- Space: $O(|V|+|E|)$
\rightarrow Excellent when $|E|$ is small
- Easy to list all neighbors of a vertex
- Takes $O(|\mathrm{~V}|)$ time to check if a vertex u is a neighbor of a vertex v
- can also represent weighted graph

Adjacency Matrix (1)

- Use a $|V| \times|V|$ matrix A such that

$$
\begin{array}{ll}
A(u, v)=1 & \text { if }(u, v) \text { is an edge } \\
A(u, v)=0 & \text { otherwise }
\end{array}
$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	0	0
3	0	1	0	1	1
4	0	0	1	0	1
5	1	0	1	1	0

Adjacency Matrix (2)

- Use a $|V| \times|V|$ matrix A such that

$$
\begin{array}{ll}
A(u, v)=1 & \text { if }(u, v) \text { is an edge } \\
A(u, v)=0 & \text { otherwise }
\end{array}
$$

	1	2	3	4	5
1	0	0	0	0	1
2	1	0	1	0	0
3	0	1	0	0	0
4	0	0	0	1	0
5	0	0	1	1	0

Adjacency Matrix (3)

- Let $G=(V, E)$ be an input graph
- Using Adjacency Matrix representation :
- Space: $O\left(|V|^{2}\right)$
\rightarrow Bad when $|E|$ is small
- O(1) time to check if a vertex u is a neighbor of a vertex v
- $\Theta(|V|)$ time to list all neighbors
- can also represent weighted graph

Transpose of a Matrix

- Let A be an $n \times m$ matrix

Definition:

The transpose of A, denoted by A^{\top}, is an $m \times n$ matrix such that

$$
A^{\top}(u, v)=A(v, u) \text { for every } u, v
$$

\rightarrow If A is an adjacency matrix of an undirected graph, then $A=A^{\top}$

Breadth First Search (BFS)

- A simple algorithm to find all vertices reachable from a particular vertex s
- s is called source vertex
- Idea: Explore vertices in rounds
- At Round k, visit all vertices whose shortest distance (\#edges) from s is k-1
- Also, discover all vertices whose shortest distance from s is k

The BFS Algorithm

1. Mark s as discovered in Round 0
2. For Round $k=1,2,3, \ldots$,

For (each u discovered in Round k-1)
\{ Marku as visited:
Visit each neighbor v of u;
If (v not visited and not discovered) Mark vas discovered in Round k ;

Stop if no vertices were discovered in Round k-1

Example (s = source)

? visited (? = discover time)
? discovered (? = discover time) direction of edge when new node is discovered

Example (s = source)

? visited (? discover time)
? discovered (? = discover time) direction of edge when new node is discovered

Example (s = source)

? visited

> (? = discover time)

ว discovered
(? = discover time)
\rightarrow direction of edge when new node is discovered

Example ($s=$ source)

Done when no new node is discovered

The directed edges form a tree that contains all nodes reachable from s Called BFS tree of s

Correctness

- The correctness of BFS follows from the following theorem:

Theorem: A vertex v is discovered in Round k if and only if shortes \dagger distance of v from source s is k

Proof: By induction

Performance

- BFS algorithm is easily done if we use
- an $O(|V|)$-size array to store discovered/visited information
- a separate list for each round to store the vertices discovered in that round
- Since no vertex is discovered twice, and each edge is visited at most twice (why?)
\rightarrow Total time: $O(|V|+|E|)$
\rightarrow Total space: $O(|V|+|E|)$

Performance (2)

- Instead of using a separate list for each round, we can use a common queue
- When a vertex is discovered, we put it at the end of the queue
- To pick a vertex to visit in Step 2, we pick the one at the front of the queue
- Done when no vertex is in the queue
\rightarrow No improvement in time/space ...
\rightarrow But algorithm is simplified
Question: Can you prove the correctness of using queue?

