
1

CS4311
Design and Analysis of

Algorithms

Lecture 22:
Elementary Graph Algorithms I

2

About this lecture
•Representation of Graph

•Adjacency List, Adjacency Matrix

•Breadth First Search

3

Graph

1

2 3

4

5 1

2 3

4

5

undirected directed

4

Adjacency List (1)
•For each vertex u, store its neighbors in

a linked list

1

2 3

4

5

1 2 5

2 1 3

3 2 5

4 3 5

5 1 3

vertex neighbors

4

4

5

Adjacency List (2)
•For each vertex u, store its neighbors in

a linked list
1 5

2 1 3

3 2

4 4

5 3 4

vertex neighbors

1

2 3

4

5

6

Adjacency List (3)
•Let G = (V, E) be an input graph
•Using Adjacency List representation :

•Space : O(|V| + |E|)
 Excellent when |E| is small

•Easy to list all neighbors of a vertex
•Takes O(|V|) time to check if a vertex

u is a neighbor of a vertex v
•can also represent weighted graph

7

Adjacency Matrix (1)
•Use a |V| |V| matrix A such that

A(u,v) = 1 if (u,v) is an edge
A(u,v) = 0 otherwise

1

2 3

4

5

10010

01101
10100
11010
00101

1

5

4

3

2

54321

8

Adjacency Matrix (2)

1

2 3

4

5

10000

01100
01000
00010
00101

1

5

4

3

2

54321

•Use a |V| |V| matrix A such that
A(u,v) = 1 if (u,v) is an edge
A(u,v) = 0 otherwise

9

Adjacency Matrix (3)
•Let G = (V, E) be an input graph
•Using Adjacency Matrix representation :

•Space : O(|V|2)
 Bad when |E| is small

•O(1) time to check if a vertex u is a
neighbor of a vertex v

•(|V|) time to list all neighbors
•can also represent weighted graph

10

Transpose of a Matrix
•Let A be an n m matrix
Definition:

The transpose of A, denoted by AT, is an
m n matrix such that

AT(u,v) = A (v,u) for every u, v

 If A is an adjacency matrix of an
undirected graph, then A = AT

11

Breadth First Search (BFS)
•A simple algorithm to find all vertices

reachable from a particular vertex s
• s is called source vertex

•Idea: Explore vertices in rounds
•At Round k, visit all vertices whose

shortest distance (#edges) from s is k-1
•Also, discover all vertices whose

shortest distance from s is k

12

The BFS Algorithm
1. Mark s as discovered in Round 0
2. For Round k = 1, 2, 3, …,

For (each u discovered in Round k-1)
{ Mark u as visited ;

Visit each neighbor v of u ;
If (v not visited and not discovered)

Mark v as discovered in Round k ;
}
Stop if no vertices were
discovered in Round k-1

13

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

visited
(? = discover time)

discovered
(? = discover time)

?

?

0 0

direction of edge when
new node is discovered

1

1 1

01

11

14

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

visited
(? = discover time)

discovered
(? = discover time)

?

?

0

direction of edge when
new node is discovered

0 2

1

0

1

1

2 1

1

1 12

2

1

1

2

15

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

visited
(? = discover time)

discovered
(? = discover time)

?

?

0

direction of edge when
new node is discovered

0

3

1

0

1

1 1

1 1

1

1

2

2

2

1 42

2 3

3

4

2

16

Example (s = source)

v

r s

w x

t u

y

0

1 1

1

2

3

4

2
Done when no new
node is discovered

v

r s

w x

t u

y

0

1 1

1

2

3

4

2 The directed edges form
a tree that contains all
nodes reachable from s

Called BFS tree of s

17

Correctness

•The correctness of BFS follows from the
following theorem :

Theorem: A vertex v is discovered in
Round k if and only if shortest
distance of v from source s is k

Proof: By induction

18

Performance
•BFS algorithm is easily done if we use

•an O(|V|)-size array to store
discovered/visited information

•a separate list for each round to store
the vertices discovered in that round

•Since no vertex is discovered twice, and
each edge is visited at most twice (why?)

 Total time: O(|V|+|E|)
 Total space: O(|V|+|E|)

19

Performance (2)
•Instead of using a separate list for each

round, we can use a common queue
•When a vertex is discovered, we put it

at the end of the queue
•To pick a vertex to visit in Step 2, we

pick the one at the front of the queue
•Done when no vertex is in the queue

 No improvement in time/space …
 But algorithm is simplified
Question: Can you prove the correctness of using queue?

