CS4311 Design and Analysis of Algorithms

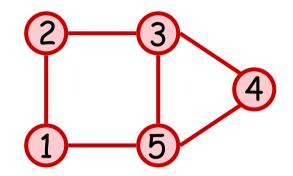
Lecture 22: Elementary Graph Algorithms I

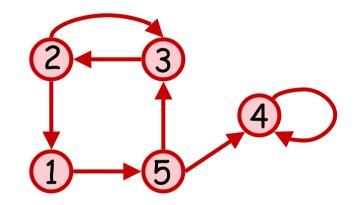
1

About this lecture

- Representation of Graph
 - Adjacency List, Adjacency Matrix
- Breadth First Search

Graph



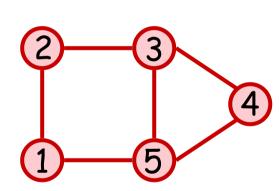


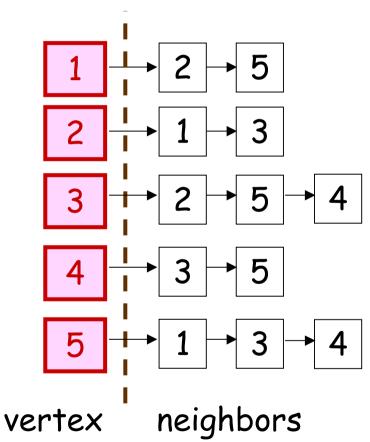
undirected

directed

Adjacency List (1)

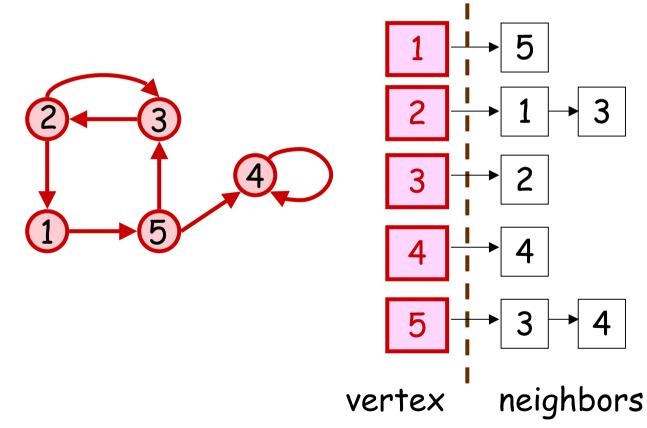
 For each vertex u, store its neighbors in a linked list





Adjacency List (2)

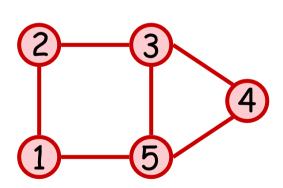
 For each vertex u, store its neighbors in a linked list

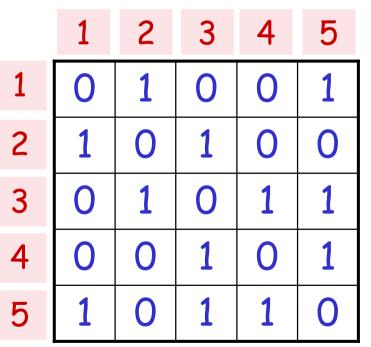


Adjacency List (3)

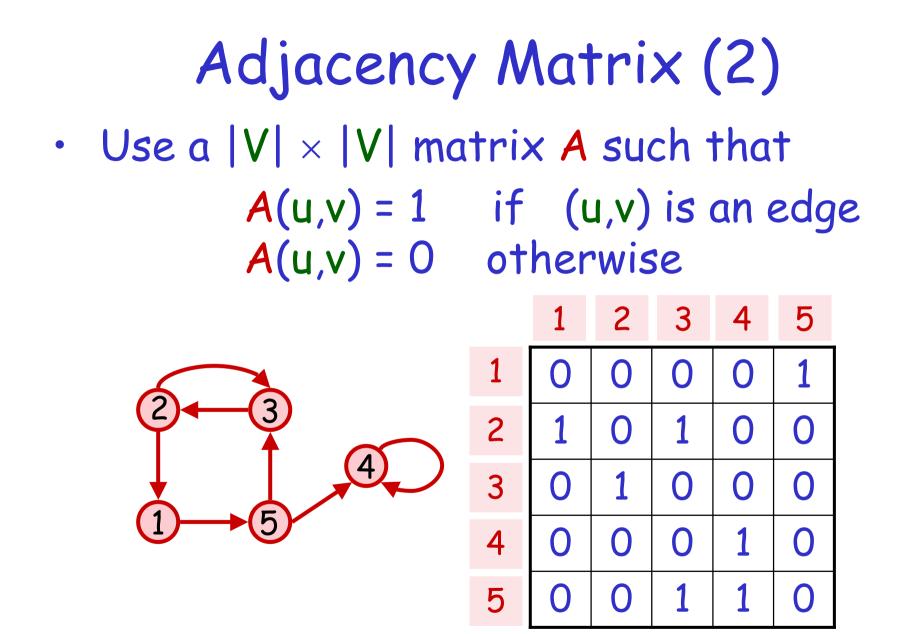
- Let G = (V, E) be an input graph
- Using Adjacency List representation :
 - Space : O(|V| + |E|)
 - → Excellent when |E| is small
 - Easy to list all neighbors of a vertex
 - Takes O(|V|) time to check if a vertex u is a neighbor of a vertex v
- can also represent weighted graph

• Use a $|V| \times |V|$ matrix A such that A(u,v) = 1 if (u,v) is an edge A(u,v) = 0 otherwise





7



Adjacency Matrix (3)

- Let G = (V, E) be an input graph
- Using Adjacency Matrix representation :
 - Space : O(|V|²)
 → Bad when |E| is small
 - O(1) time to check if a vertex u is a neighbor of a vertex v
 - $\Theta(|V|)$ time to list all neighbors
- can also represent weighted graph

Transpose of a Matrix

• Let A be an $n \times m$ matrix

Definition:

The transpose of A, denoted by A^{T} , is an $m \times n$ matrix such that $A^{T}(u,v) = A(v,u)$ for every u, v

→ If A is an adjacency matrix of an undirected graph, then $A = A^T$

Breadth First Search (BFS)

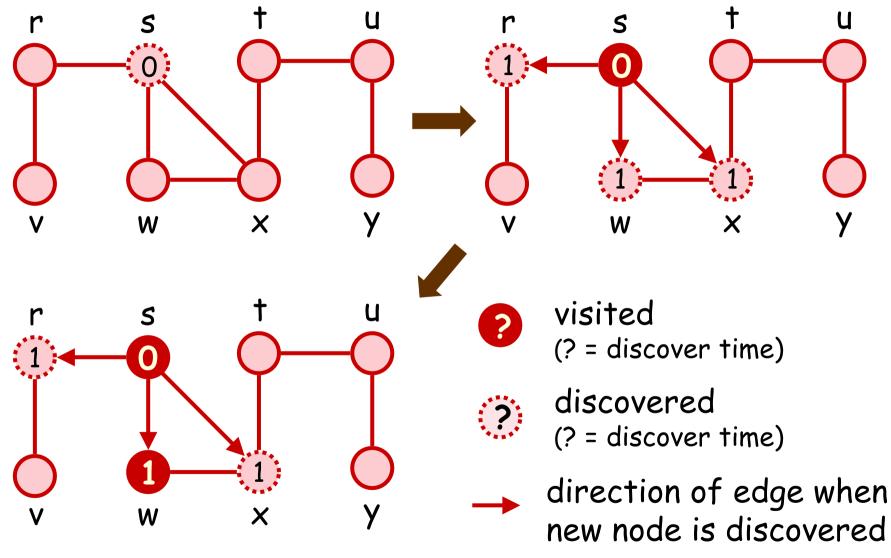
- A simple algorithm to find all vertices reachable from a particular vertex s
 - s is called source vertex
- Idea: Explore vertices in rounds
 - At Round k, visit all vertices whose shortest distance (#edges) from s is k-1
 - Also, discover all vertices whose shortest distance from s is k

The BFS Algorithm

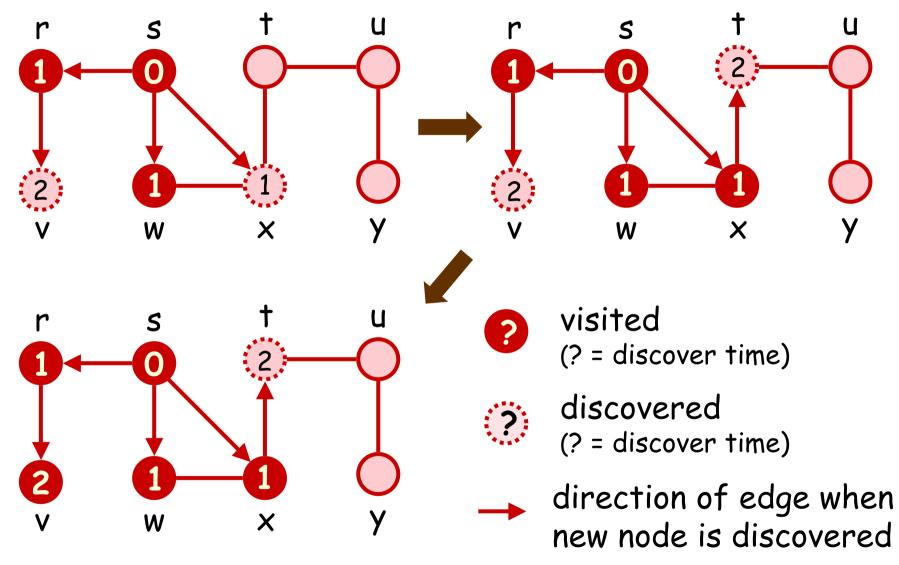
- 1. Mark s as discovered in Round 0
- 2. For Round k = 1, 2, 3, ...,
 - For (each u discovered in Round k-1)
 - Mark u as visited ;
 - Visit each neighbor v of u ;
 - If (v not visited and not discovered) Mark v as discovered in Round k :

Stop if no vertices were discovered in Round k-1

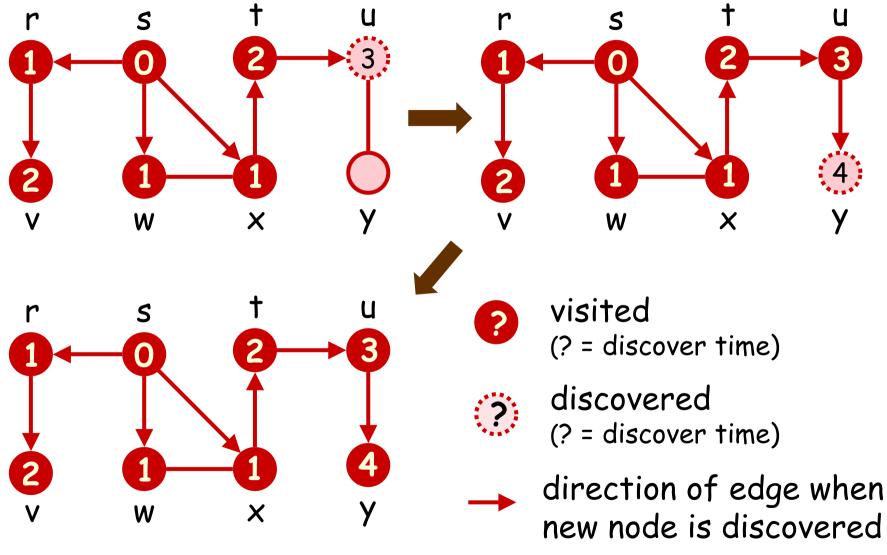
Example (s = source)



Example (s = source)



Example (s = source)



Example (s = source)



Done when no new node is discovered

The directed edges form a tree that contains all nodes reachable from s

Called BFS tree of s

Correctness

• The correctness of BFS follows from the following theorem :

Theorem: A vertex v is discovered in Round k if and only if shortest distance of v from source s is k

Proof: By induction

Performance

- BFS algorithm is easily done if we use
 - an O(|V|)-size array to store discovered/visited information
 - a separate list for each round to store the vertices discovered in that round
- Since no vertex is discovered twice, and each edge is visited at most twice (why?)
 - → Total time: O(|V|+|E|)
 - → Total space: O(|V|+|E|)

Performance (2)

- Instead of using a separate list for each round, we can use a common queue
 - When a vertex is discovered, we put it at the end of the queue
 - To pick a vertex to visit in Step 2, we pick the one at the front of the queue
 - Done when no vertex is in the queue
- → No improvement in time/space ...
- → But algorithm is simplified

Question: Can you prove the correctness of using queue?