CS4311

Design and Analysis of
Algorithms

Lecture 22:
Elementary Graph Algorithms I

About this lecture

+ Representation of Graph

»+ Adjacency List, Adjacency Matrix

* Breadth First Search

Graph

Tt e

undirected directed

Adjacency List (1)

For each vertex u, store its neighbors in
a linked list

ENSEIRE
@—G [2 1]
%2*5%4
O—=G6 ERERE
4}1*344
|

vertex neighbors

Adjacency List (2)

* For each vertex u, store its neighbors in
a linked list

BIRE
?C@ [2] 113
T @) ﬂ:ﬁz
O—® i_.4
[5]13]14
I

vertex neighbors

Adjacency List (3)

* Let 6= (V, E) be an input graph
» Using Adjacency List representation :

- Space: O(|V]| + |E|)
= Excellent when |E| is small
» Easy to list all neighbors of a vertex

- Takes O(|V]) time to check if a vertex
u is a neighbor of a vertex v

» can also represent weighted graph

Adjacency Matrix (1)

- Usea |V]| x |V| matrix A such that

A(uv)=1 if (uyv)isanedge
A(u,v) =0 otherwise

1 2 3 4 5

t[o[1]0o]0]1

@—G 2|1]ol1]0]0
s{ol1]of1]1

O—=6 slolol1]0]1
5 1(0[1]1]0

Adjacency Matrix (2)

- Usea |V]| x |V| matrix A such that

A(uv)=1 if (uyv)isanedge
A(u,v) =0 otherwise

1 2 3 4 5

T 1 [ololololt
?‘* >1loltlo]o0
| @O sioTiloTolo
O—C slololol1]o0
s0lol1]1]0

Adjacency Matrix (3)

* Let 6= (V, E) be an input graph
» Using Adjacency Matrix representation :
+ Space: O(|V]?)

= Bad when |E]| is small

+ O(1) time to check if avertex uisa
neighbor of a vertex v

- O(|V]) time to list all neighbors
» can also represent weighted graph

Transpose of a Matrix

- Let A be an h x m matrix

Definition:
The transpose of A, denoted by AT, is an
m x h matrix such that

AT(uv)= A (v,u) foreveryu,v

= If A is an adjacency matrix of an
undirected graph, then A = AT

10

Breadth First Search (BFS)

» A simple algorithm to find all vertices
reachable from a particular vertex s

s is called source vertex

* Idea: Explore vertices in rounds

- At Round k, visit all vertices whose
shortest distance (#edges) from s is k-1

+ Also, discover all vertices whose
shortest distance from s is k

11

The BFS Algorithm

1. Mark s as discovered in Round O
2. ForRound k=1,2, 3, ..,
For (each u discovered in Round k-1)
{ Mark u as visited ;
Visit each neighbor v of u;
If (v not visited and not discovered)
Mark v as discovered in Round k ;

}

Stop if no vertices were
discovered in Round k-1 12

Example (s = source)

visited

U
14_ O (? = discover time)
<5, discovered
w5 (? = discover time)

_, direction of edge when
new node is discovered
13

Example (s = source)

r S T u

visited
(? = discover time)

<5, discovered
“t (2 = discover time)
_, direction of edge when

hew hode is discovered
14

Example (s = source)

S

07

9

o—
|

< inie—@ c

u
3
O
Y

5 <Q4—?1

0—i

! -
-

s é_} [e visited
|

(? = discover time)

<5, discovered
“a (2 = discover time)

ow _, direction c_>f gdge when
new node is discovered

15

Y

Example (s = source)

o4 9%
;y l
2 4
Vv w X Y
N
(2] 4
Vv w X Y

Done when no new
hode is discovered

The directed edges form
a tree that contains all
hodes reachable from s

Called BFS tree of s

16

Correctness

+ The correctness of BFS follows from the
following theorem :

Theorem: A vertex v is discovered in
Round k if and only if shortest
distance of v from source s is k

Proof: By induction

17

Performance

BFS algorithm is easily done if we use

» an O(|V|)-size array to store
discovered/visited information

* a separate list for each round to store
the vertices discovered in that round

+ Since no vertex is discovered twice, and

each edge is visited at most twice (why?)
= Total time: O(|V]|+|E|)
- Total space: O(|V|+|E|)

18

Performance (2)
» Instead of using a separate list for each
round, we can use a common queue

When a vertex is discovered, we put it
at the end of the queue

To pick a vertex to visit in Step 2, we
pick the one at the front of the queue

Done when no vertex is in the queue
= No improvement in time/space ...
= But algorithm is simplified

Question: Can you prove the correctness of using queue?
19

