
1

CS4311
Design and Analysis of

Algorithms

Lecture 21:
Data Structures for Disjoint Sets II

2

About this lecture
•Data Structure for Disjoint Sets

•Support Union and Find operations

•Various Methods:
1. Linked List
2. Union by Size (this lecture)
3. Union by Rank
4. Union by Rank + Path Compression

3

Disjoint-Set Forest

•Another popular method to maintain
disjoint sets is by a forest

•Each set  a separate rooted tree
•Representative root of tree

•Unlike the linked lists implementation,
each element now points only to its
parent (and does not directly point to the
representative)

4

a

b

c d e

f

g

h

Current dynamic sets : { {a,b,c,d}, {e,f,g}, {h} }

Example

5

Disjoint-Set Forest
•To perform Union(x,y), we join the trees

containing x and containing y, by linking
their roots

•E.g. Union(f,h) in previous example gives:

e

f

g

h

6

Disjoint-Set Forest

•Let Hmax = max height of all trees
•In the worst-case:

Make-Set : (1) time

Find or Union : (Hmax) time

 m operations on n elements :
worst-case (mn) time

7

Union By Size
•Let us apply a union-by-size heuristic :

To perform Union, we link root of the
smaller tree to root of the larger tree

 Hmax = (log n) (how to prove??)

 m operations : (m log n) time

8

Union By Rank
•A similar heuristic is called union-by-rank
•Each node keeps track of its rank –an

upper bound on the height of the node
•In a single-node tree (created by Make-Set)

rank of root = 0

To perform Union, we link root with
smaller rank to root with larger rank

9

Union By Rank
•Rank needs not be very accurate

•as long as it always gives an upper
bound of height is enough

•When Union is performed, only the rank
of the roots may change :
•If both roots have same rank
 rank of new root increases by 1

•Else, no change

10

Example ? = rank

a

b

c d e

f

g

Before Union

1

0 0 0

1

0 0

0

After Union(c,f)

a

b

c d

e

f

g

2

0 0 01

0

11

Union By Rank

•Let Hmax = max height of all trees

 Hmax = (log n) (how to prove??)

 m operations : (m log n) time

•So, union by rank is no better than union
by size, but …

12

Path Compression
•The closer a node to its root, the faster

the Find or Union operation

•When we perform Find(x), we will need to
find the root of the tree containing x
 will access every ancestor of x

•why don’t we make all these ancestors
of x closer to the root now?
(Because no increase in asymptotic performance !!!)

13

Example

After Find(x)

x v

u

w

Before Find(x)

x

v

u

w

14

Union by Rank + Path Compression
•If Union(x,y) is always performed by first

Find(x), Find(y), and then linking the roots,
then by combining union-by-rank (at Union)
and path compression (at Find and Union) :

m operations: (m(n)) time

Inverse Ackermann
(in practice, at most 4)

15

Finding Connected Components

•Recall: To find connected components of
a graph G with n vertices and m edges
•there are n Make-Set and m Find or

Union operations

•Which scheme for dynamic disjoint sets
gives the best running time (theoretically) ?
Ans. Depends on m (why?)

