CS4311

Design and Analysis of
Algorithms

Lecture 21:
Data Structures for Disjoint Sets IT

About this lecture

* Data Structure for Disjoint Sets

» Support Union and Find operations

- Various Methods:

1. Linked List
Union by Size <« (this lecture)

2.
3. Union by Rank ‘A//
2

Union by Rank + Path Compression

Disjoint-Set Forest

Another popular method to maintain
disjoint sets is by a forest

Each set <& a separate rooted tree
Representative < root of tree

Unlike the linked lists implementation,
each element now points only to its

parent (and does not directly point to the
representative)

Example

Current dynamic sefts : { {a,b,c.,d}, {ef,g}, {h} }

(9,

/E\ & ®
® © @ G

Disjoint-Set Forest

» To perform Union(x,y), we join the trees
containing x and containing y, by linking
their roots

» E.g. Union(f h) in previous example gives:

Disjoint-Set Forest

+ Let H, = max height of all trees
* In the worst-case:

Make-Set : O(1) time
Find or Union : O(H,) Time
= m operations on n elements :
worst-case ®(mn) time

Union By Size
» Let us apply a union-by-size heuristic :

To perform Union, we link root of the
smaller tree to root of the larger tree

2 H,..= O(log n) (how to prove??)
= m operations : ®(m log n) time

Union By Rank

» A similar heuristic is called union-by-rank
» Each node keeps track of its rank - an

upper bound on the height of the node
* Inasingle-node tree (created by Make-Set)
rank of root = O

To perform Union, we link root with
smaller rank to root with larger rank

Union By Rank

* Rank needs not be very accurate

» as long as it always gives an upper
bound of height is enough

* When Union is performed, only the rank

of the roots may change :

» If both roots have same rank
= rank of new root increases by 1

» Else, no change

Example ? = rank

Before Union After Union(c,f)

'®
§0%

10

Union By Rank

+ Let H, = max height of all trees

2> H,..= O(log n) (how to prove??)

= m operations : ®(m log n) time

* S0, union by rank is no better than union

by size, buft ...

11

Path Compression

The closer a node to its root, the faster
the Find or Union operation

When we perform Find(x), we will need to
find the root of the tree containing x

=> will access every ancestor of x

» why don't we make all these ancestors

of x closer to the root now?
(Because no increase in asymptotic performance !ll)

12

Before Find(x)

Example

After Find(x)

13

Union by Rank + Path Compression

» If Union(x,y) is always performed by first
Find(x), Find(y), and then linking the roots,

then by combining union-by-rank (at Union)
and path compression (at Find and Union) :

m operations: O(ma(n)) time
-

Inverse Ackermann
(in practice, at most 4)

14

Finding Connected Components

» Recall: To find connected components of
a graph G with n vertices and m edges

- there are n Make-Set and m Find or
Union operations

* Which scheme for dynamic disjoint sets
gives the best running time (theoretically) ?

Ans. Depends on m (why?)

15

