CS4311 Design and Analysis of Algorithms

Lecture 21: Data Structures for Disjoint Sets II

1

About this lecture

- Data Structure for Disjoint Sets
 - Support Union and Find operations
- Various Methods:
 - 1. Linked List
 - 2. Union by Size (this lecture)
 - 3. Union by Rank *
 - 4. Union by Rank + Path Compression

Disjoint-Set Forest

- Another popular method to maintain disjoint sets is by a forest
 - Each set \Leftrightarrow a separate rooted tree
 - Representative <> root of tree
- Unlike the linked lists implementation, each element now points only to its parent (and does not directly point to the representative)

Current dynamic sets : { {a,b,c,d}, {e,f,g}, {h} }

Disjoint-Set Forest

- To perform Union(x,y), we join the trees containing x and containing y, by linking their roots
- E.g. Union(f,h) in previous example gives:

Disjoint-Set Forest

- Let H_{max} = max height of all trees
- In the worst-case:
 Make-Set : $\Theta(1)$ time
 Find or Union : $O(H_{max})$ time
- → m operations on n elements : worst-case ⊕(mn) time

Union By Size

• Let us apply a union-by-size heuristic :

To perform Union, we link root of the smaller tree to root of the larger tree

- $\rightarrow H_{max} = O(\log n) \qquad (how to prove??)$
- \rightarrow m operations : $\Theta(m \log n)$ time

Union By Rank

- A similar heuristic is called union-by-rank
- Each node keeps track of its rank an upper bound on the height of the node
 - In a single-node tree (created by Make-Set)
 rank of root = 0

To perform Union, we link root with smaller rank to root with larger rank

Union By Rank

- Rank needs not be very accurate
 - as long as it always gives an upper bound of height is enough
- When Union is performed, only the rank of the roots may change :
 - If both roots have same rank
 rank of new root increases by 1
 - Else, no change

Union By Rank

- Let H_{max} = max height of all trees
 - $\rightarrow H_{max} = O(\log n) \qquad (how to prove??)$
 - \rightarrow m operations : $\Theta(m \log n)$ time
- So, union by rank is no better than union by size, but ...

Path Compression

- The closer a node to its root, the faster the Find or Union operation
- When we perform Find(x), we will need to find the root of the tree containing x
 will access every ancestor of x
 - why don't we make all these ancestors of x closer to the root now?

(Because no increase in asymptotic performance !!!)

Union by Rank + Path Compression

 If Union(x,y) is always performed by first Find(x), Find(y), and then linking the roots, then by combining union-by-rank (at Union) and path compression (at Find and Union):

m operations: $\Theta(m\alpha(n))$ time

Inverse Ackermann (in practice, at most 4)

Finding Connected Components

- Recall: To find connected components of a graph G with n vertices and m edges
 - there are n Make-Set and m Find or Union operations
- Which scheme for dynamic disjoint sets gives the best running time (theoretically)?
 Ans. Depends on m (why?)