
1

CS4311
Design and Analysis of

Algorithms

Lecture 20:
Data Structures for Disjoint Sets I



2

About this lecture
•Data Structure for Disjoint Sets

•Support Union and Find operations

•Various Methods:
1. Linked List (this lecture)
2. Union by Size
3. Union by Rank
4. Union by Rank + Path Compression



3

Maintaining Disjoint Set

•In some applications, especially in
algorithms relating to graphs, we often
have a set of elements, and want to
maintain a dynamic partition of them
•I.e., the partition changes over time

•Our target corresponds to maintaining
dynamic disjoint sets of the elements



4

Maintaining Disjoint Set

•Let = { S1, S2, …, Sk } be a collection of
dynamic disjoint sets of the elements

•Let x and y be any two elements
•We want to support:

Make-Set(x): create a set containing x
Find(x) : return which set x belongs
Union(x,y) : merge the sets containing x

and containing y into one



5

Example Application:
Finding Connected Components

Step 0: Begin with the input graph

a
b

c d

e

f

g
h



6

Step 1: Make-Set(v) for each vertex v

a
b

c d

e

f

g
h

current : { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }

Example Application:
Finding Connected Components



7

Step 2: Visit each edge (u,v), perform Union(u,v)

a
b

c d

e

f

g
h

current : { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }

Example Application:
Finding Connected Components



8

Step 2: Visit (a,b)

a
b

c d

e

f

g
h

current : { {a,b}, {c}, {d}, {e}, {f}, {g}, {h} }

edge visited

Step 2: Visit (c,d)

a
b

c d

e

f

g
h

current : { {a,b}, {c,d}, {e}, {f}, {g}, {h} }



9

Step 2: Visit (e,f)

a
b

c d

e

f

g
h

current : { {a,b}, {c,d}, {e,f}, {g}, {h} }

edge visited

Step 2: Visit (b,c)

a
b

c d

e

f

g
h

current : { {a,b,c,d}, {e,f}, {g}, {h} }



10

Step 2: Visit (f,g)

a
b

c d

e

f

g
h

current : { {a,b,c,d}, {e,f,g}, {h} }

edge visited

Step 2: Visit (b,d)

a
b

c d

e

f

g
h

current : { {a,b,c,d}, {e,f,g}, {h} }



11

After Step 2 (when all edges visited) :
Each Disjoint Set  Connected Component

a
b

c d

e

f

g
h

current : { {a,b,c,d}, {e,f,g}, {h} }

Example Application:
Finding Connected Components



12

Remarks
•To facilitate Find(x), each set usually

chooses one of its element as a
representative
 Find(x) returns the representative

element of the set where x belongs

•To check if x and y belong to the same
set, we can just check if

Find(x) == Find(y)



13

Disjoint Set with Linked List
•A simple way to maintain disjoint sets is

by using linked lists:
•Each set  a separate linked list
•Representative head element of list

•To facilitate Find and Union:
•each element in the list has an extra

pointer that points at head element
•each list has a pointer to the tail



14

E.g., disjoint sets { {a,b,c,d}, {e,f,g}, {h} }
is stored by:

head a b c d

tail

head e f g

tail

head h

tail



15

Disjoint Set with Linked List
•To perform Union(x,y), we join the lists

containing x and containing y, one list
after the other, and update the pointers
of the latter list

•E.g. Union(g,h) in previous example gives:

head e f g

tail

h



16

Disjoint Set with Linked List

•In the worst-case:
Make-Set or Find : (1) time

Union : (n) time

 m operations on n elements :
(m + n2) time



17

Disjoint Set with Linked List
•Let us apply a weighted-union heuristic :

To perform Union, we merge lists with
longer one first, followed by shorter list

•No change in worst-case time, but …
• m operations : (m + n log n) time

Reason: The time to perform Union is from changing head
pointer of each element in the latter list
With the heuristic, each element changes head
pointer at most log n times (why??)


