CS4311 Design and Analysis of Algorithms

Lecture 17: Binomial Heap

1

About this lecture

- Binary heap supports various operations quickly: extract-min, insert, decrease-key
- If we already have two min-heaps, A and B, there is no efficient way to combine them into a single min-heap
- Introduce Binomial Heap
 - can support efficient union operation

Mergeable Heaps

- Mergeable heap : data structure that supports the following 5 operations:
 - Make-Heap(): return an empty heap
 - Insert(H,x,k): insert an item x with key k into a heap H
 - Find-Min(H): return item with min key
 - Extract-Min(H): return and remove
 - Union(H_1 , H_2): merge heaps H_1 and H_2

Mergeable Heaps

- Examples of mergeable heap : Binomial Heap (this lecture) Fibonacci Heap (next lecture)
- Both heaps also support:
 - Decrease-Key(H,x,k):
 - assign item x with a smaller key k
 - Delete(H,x): remove item x

Binary Heap vs Binomial Heap

	Binary Heap	Binomial Heap
Make-Heap	Θ(1)	Θ(1)
Find-Min	Θ(1)	Θ(log n)
Extract-Min	Θ(log n)	Θ(log n)
Insert	Θ(log n)	Θ(log n)
Delete	Θ(log n)	Θ(log n)
Decrease-Key	Θ(log n)	Θ(log n)
Union	⊙(n)	Θ(log n)

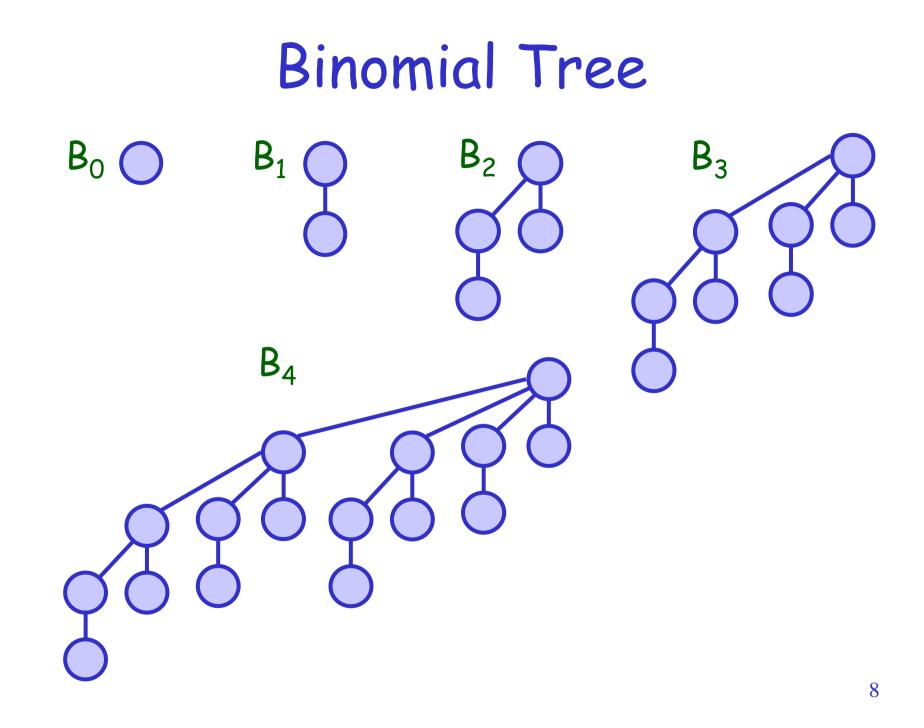
- Unlike binary heap which consists of a single tree, a binomial heap consists of a small set of component trees
 - no need to rebuild everything when union is perform
- Each component tree is in a special format, called a binomial tree

Binomial Tree

Definition:

A binomial tree of order k, denoted by B_k , is defined recursively as follows:

- B₀ is a tree with a single node
- For $k \ge 1$, B_k is formed by joining two B_{k-1} , such that the root of one tree becomes the leftmost child of the root of the other



Properties of Binomial Tree

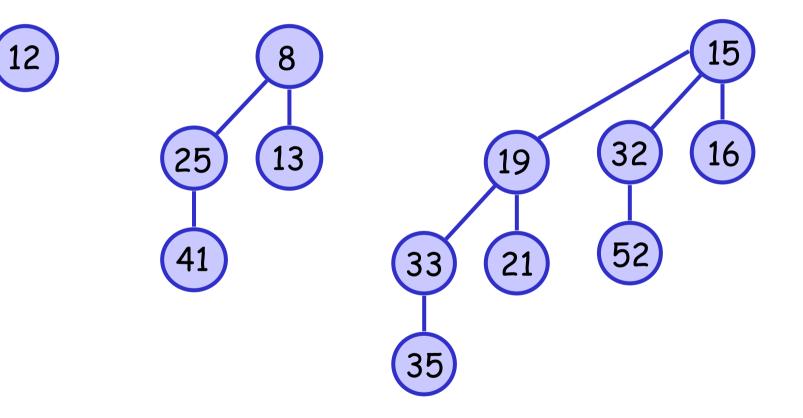
Lemma: For a binomial tree B_k ,

- 1. There are 2^k nodes
- 2. height = k
- 3. deg(root) = k ; deg(other node) < k
- 4. Children of root, from left to right, are B_{k-1}, B_{k-2}, ..., B₁, B₀
- 5. Exactly C(k,i) nodes at depth I

How to prove? (By induction on k)

- Binomial heap of n elements consists of a specific set of binomial trees
 - Each binomial tree satisfies min-heap ordering: for each node x, key(x) ≥ key(parent(x))
 - For each k, at most one binomial tree whose root has degree k
 (i.e., for each k, at most one B_k)

Example: A binomial heap with 13 elements

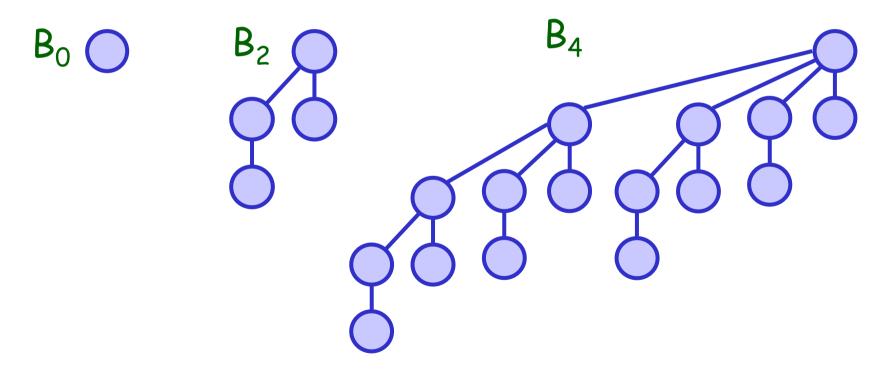


• Let $\mathbf{r} = \lceil \log(n+1) \rceil$, and

 $\langle \ b_{r\text{-}1}, \ b_{r\text{-}2}, \ ..., \ b_2, \ b_1, \ b_0 \ \rangle$ be binary representation of n

- Then, we can see that an n-node binomial heap contains B_k if and only if $b_k = 1$
- Also, an n-node binomial heap has at most [log (n+1)] binomial trees

E.g., $21_{(dec)} = 10101_{(bin)}$ \rightarrow any 21-node binomial heap must contain:



Binomial Heap Operations

- With the binomial heap,
 - Make-Heap(): O(1) time
 - Find-Min(): O(log n) time
 - Decrease-Key(): O(log n) time

[Decrease-Key assumes we have the pointer to the item x in which its key is changed]

Remaining operations : Based on Union()

Union Operation

• Recall that:

an n-node binomial heap corresponds to binary representation of n

• We shall see:

Union binomial heaps with n_1 and n_2 nodes corresponds to adding n_1 and n_2 in binary representations

Union Operation

- Let H_1 and H_2 be two binomial heaps
- To Union them, we process all binomial trees in the two heaps with same order together, starting with smaller order first
- Let k be the order of the set of binomial trees we currently process

Union Operation

There are three cases:

1. If there is only one $B_k \rightarrow done$

2. If there are two B_k

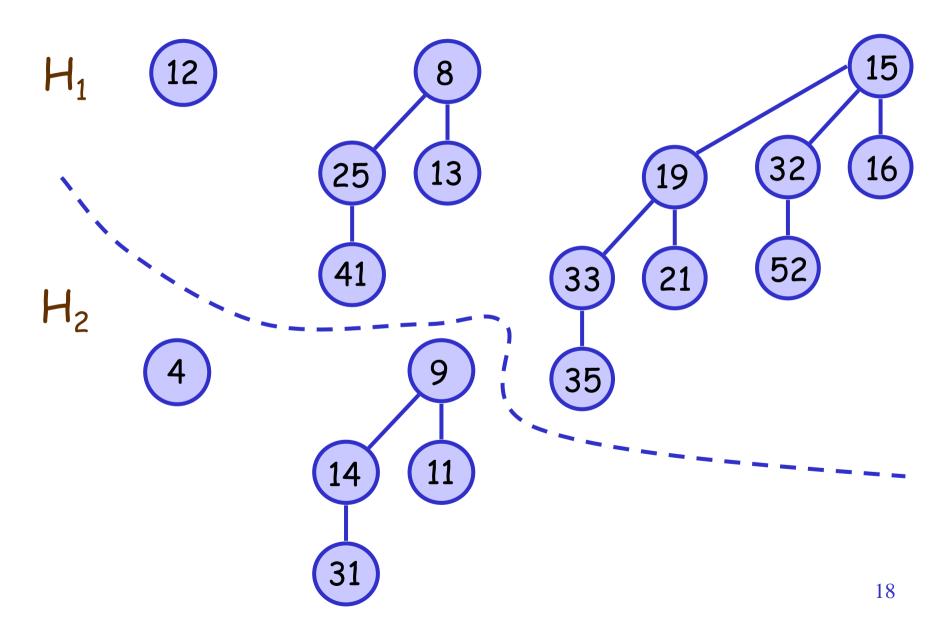
 \rightarrow Merge together, forming B_{k+1}

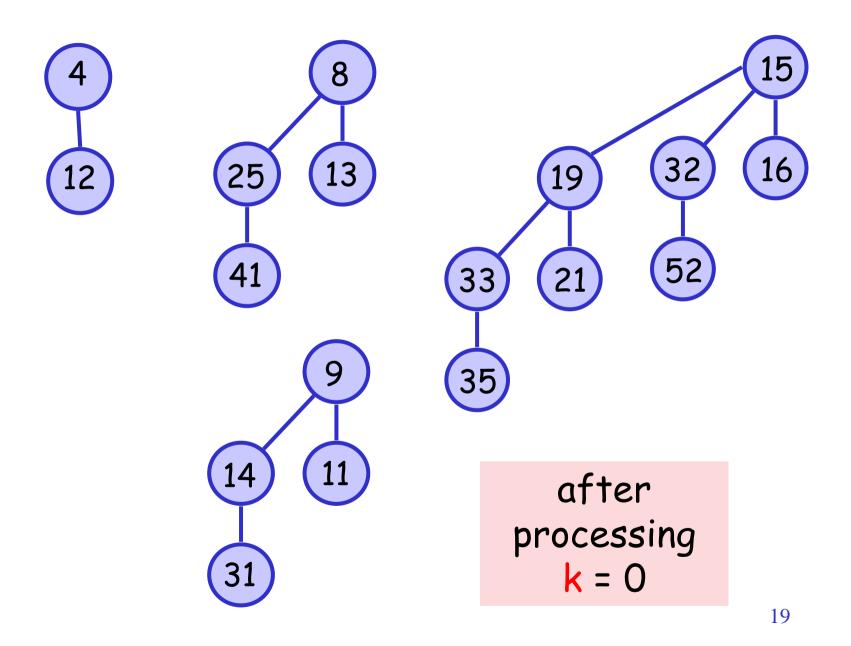
3. If there are three B_k

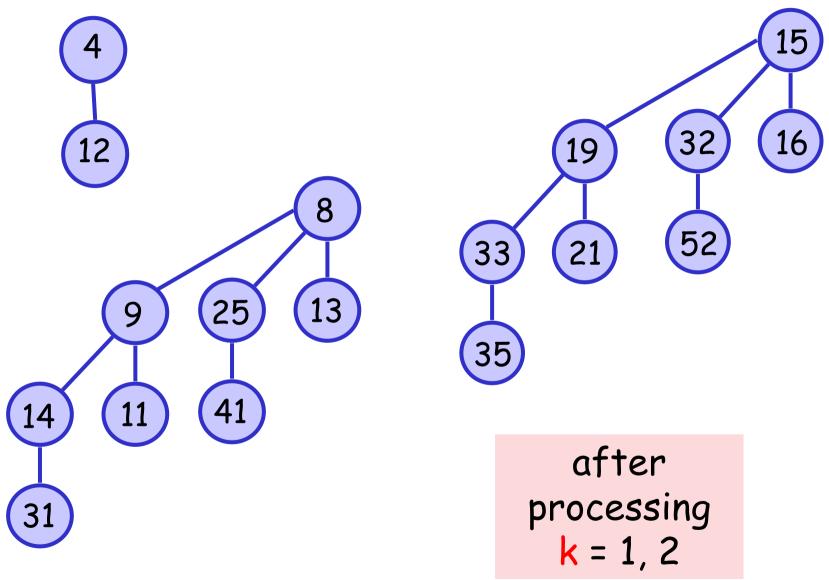
 \rightarrow Leave one, merge remaining to B_{k+1}

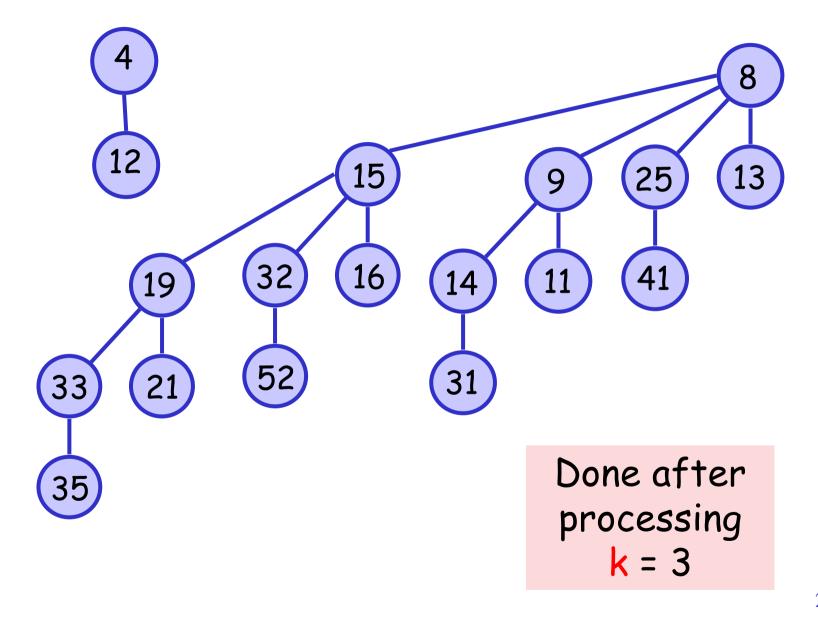
After that, process next k

Union two binomial heaps with 5 and 13 nodes







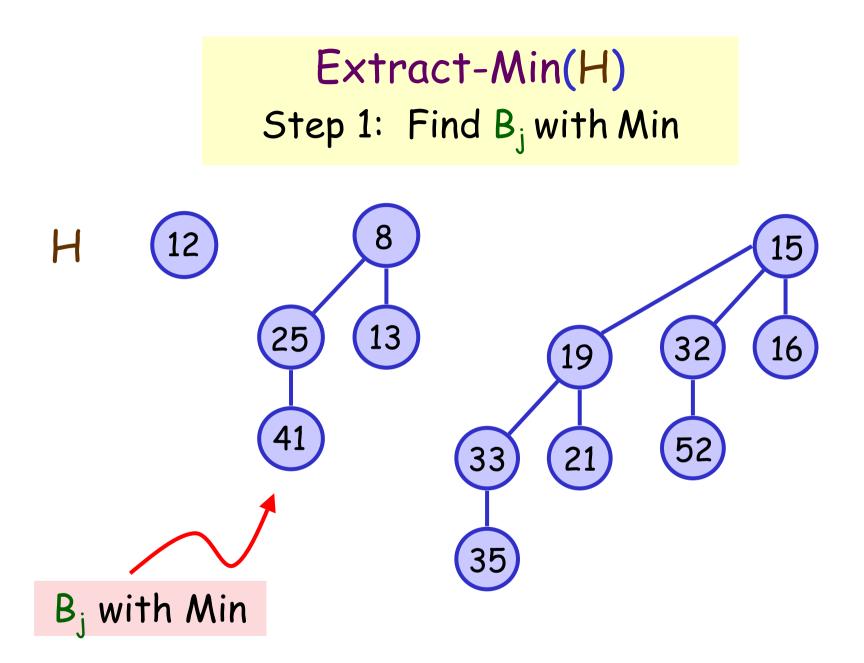


Binomial Heap Operations

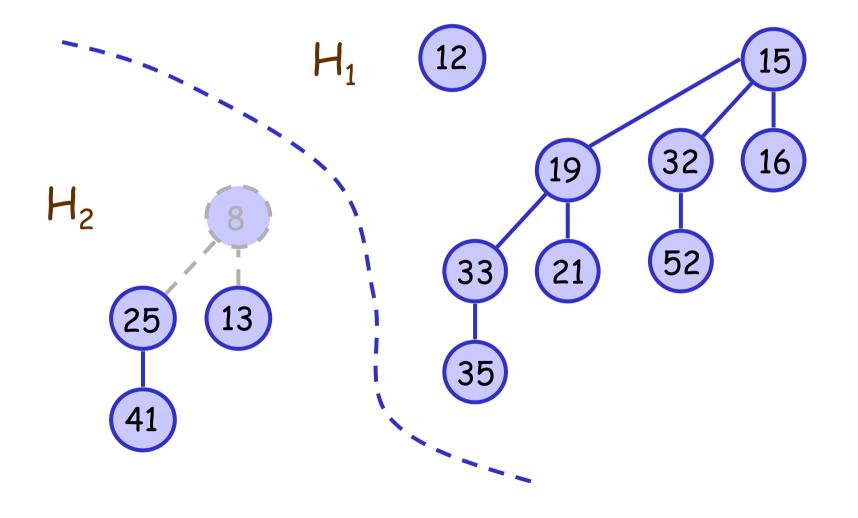
- So, Union() takes O(log n) time
- For remaining operations, Insert(), Extract-Min(), Delete() how can they be done with Union?
- Insert(H, x, k):
- Create new heap H', storing the item x with key k; then, Union(H, H')

Binomial Heap Operations

- Extract-Min(H):
- → Find the tree B_j containing the min; Detach B_j from H → forming a heap H₁; Remove root of B_j → forming a heap H₂; Finally, Union(H, H')
- Delete(H, x):
- \rightarrow Decrease-Key(H,x,- ∞); Extract-Min(H);



Extract-Min(H) Step 2: Forming two heaps



25

Extract-Min(H) Step 3: Union two heaps

