
1

CS4311
Design and Analysis of

Algorithms

Lecture 15: Amortized Analysis II

2

About this lecture

•Previous lecture shows Aggregate Method
•This lecture shows two more methods:

(2) Accounting Method
(3) Potential Method

3

Accounting Method
•In real life, a bank account

allows us to save our excess
money, and the money can be
used later when needed

•We also have an easy way to
check the savings

•In amortized analysis, the accounting
method is very similar …

4

Accounting Method
Each operation pays an amortized cost

• if amortized cost actual cost, we save the
excess in the bank

• Else, we use savings to help the payment
Often, savings can be checked easily based on

the objects in the current data structure

Lemma: For a sequence of operations, if we
have enough to pay for each operation,
total actual cost total amortized cost

5

Super Stack (Take 2)

•Recall that apart from PUSH/POP,
a super stack, supports:

SUPER-POP(k): pop top k items in k time

•Let us now assign the amortized cost for
each operation as follows:

PUSH = $2
POP or SUPER-POP = $0

6

Super Stack (Take 2)

Questions:
•Which operation “saves money to the bank”

when performed?

•Which operation “needs money from the
bank”when performed?

•How to check the savings in the bank ?

7

Super Stack (Take 2)

•Does our bank have enough to pay for each
SUPER-POP operation?

Ans. When SUPER-POP is performed, each
popped item donates its corresponding

$1 to help the payment

 Enough $$ to pay for each SUPER-POP

8

Super Stack (Take 2)

Conclusion:
•Amortized cost of PUSH = 2
•Amortized cost of POP/SUPER-POP = 0

Meaning:
For any sequence of operations with
#PUSH = n1, #POP = n2, #SUPER-POP = n3,

total actual cost 2n1

9

Binary Counter (Take 2)

•Let us use accounting method to analyze
increment operation in a binary counter,
whose initial count = 0

00000

•We assign amortized cost for
each increment = $2

•Recall: actual cost = #bits flipped

10

Binary Counter (Take 2)

Observation: In each increment operation,
at most one bit is set from 0 to 1 (whereas
the remaining bits are set from 1 to 0).

10100

count = 5

01100

count = 6

00100

count = 4

10100

count = 5

E.g.,

11

Binary Counter (Take 2)
Lemma: Savings = # of 1’s in the counter
Proof: By induction

To show amortized cost = $2 is enough,
•we use $1 to pay for flipping some bit x

from 0 to 1, and store the excess $1

•For other bits being flipped (from 1 to 0),
each donates its corresponding $1 to
help in paying the operation

 Enough to pay for each increment

12

Binary Counter (Take 2)

Conclusion:
•Amortized cost of increment = 2

Meaning:
For n increments (with initial count = 0)

total actual cost 2n

Question: What’s wrong if initial count 0?

13

Accounting Method (Remarks)

•In contrast to the aggregate method, the
accounting method may assign different
amortized costs to different operations

•Another thing: To help the analysis, we
usually link each excess $ to a specific
object in the data structure (such as an item
in a stack, or a bit in a binary counter)

 called the credit stored in the object

14

Potential Method
•In physics, an object at a higher place

has more potential energy (due to gravity)
than an object at a lower place

More potential

Less potential

15

Potential Method
•The potential energy can usually be

measured by some function of the status
of the object (in fact, its height)

•In amortized analysis, the potential
method is very similar …
•It uses a potential function to measure

the potential of a data structure, based
on its current status

16

Potential Method

•Thus, potential of a data structure may
increase or decrease after an operation

•The potential is similar to the $ in the
accounting method, which can be used to
help in paying an operation

17

Potential Method
Each operation pays an amortized cost, and

•If potential increases by d after an
operation, we need:
amortized cost actual cost + d

•If potential decreases by d after an
operation, we need:
amortized cost + d actual cost

18

Potential Method
To combine the above, we let

 = potential function
Di = data structure after ith operation
ci = actual cost of ith operation
i = amortized cost of ith operation

Then, we always need:

i ci + DiDi-1

19

Potential Method
•Because smaller amortized cost gives

better (tighter) analysis, so in general,
we set:

i = ci + DiDi-1

•Consequently, after n operations,
total amortized cost
= total actual cost + DnD0

20

Potential Method
•Any such that

DiD0for all i
should work, as it implies

total amortized cost at any time
total actual cost at any time

•Our target is to find the best such so
that amortized cost can be minimized

21

Super Stack (Take 3)

•Let us now use potential method to
analyze the operations on a super stack

•Define such that for a super stack S

S= #items in S

•Thus we have:

D0= 0, and DiD0for all i

22

Super Stack (Take 3)

•PUSH increases potential by 1
 amortized cost of PUSH = 1 + 1 = 2

•POP decreases potential by 1
 amortized cost of POP = 1 + (-1) = 0

•SUPER-POP(k) decreases potential by k
 amortized cost of SUPER-POP

= k + (-k) = 0
[Assume: Stack has enough items before POP/SUPER-POP]

23

Super Stack (Take 3)

Conclusion:
Because

D0= 0, and DiD0for all i,
 total amortized cost total actual cost

Then, by setting amortized cost for each
operation accordingly (according to what??):

amortized cost = O(1)

24

Binary Counter (Take 3)

•Let us now use potential method to
analyze the increment in a binary counter

•Define such that for a binary counter B

B= #bits in B which are 1

•Thus we have:

D0= 0, and DiD0for all i

Assume: initial count = 0

25

Binary Counter (Take 3)

•From our previous observation, at most 1
bit is set from 0 to 1, the corresponding
increase in potential is at most 1

•Now, suppose the ith operation resets ti
bits from 1 to 0
 actual cost ci = ti + 1
 potential change = (-ti) + 1
 amortized cost i

= ci + potential change = 2

26

Binary Counter (Take 3)

Conclusion:
Because

D0= 0, and DiD0for all i,
 total amortized cost total actual cost

Then, by setting amortized cost for each
operation accordingly:

amortized cost = 2 = O(1)

27

Potential Method (Remarks)

•Potential method is very similar to the
accounting method: we can save something
($/potential) now, which can be used later

•It usually gives a neat analysis, as the
cost of each operation is very specific

•However, finding a good potential function
can be extremely difficult (like magic)
•Analyzing Union-Find data structure

