CS4311

Design and Analysis of
Algorithms

Lecture 1: Getting Started

About this lecture

» Study a few simple algorithms for sorting
- Insertion Sort

- Selection Sort

- Merge Sort

» Show why these algorithms are correct

» Try to analyze the efficiency of these
algorithms (how fast they run)

The Sorting Problem

Input: A list of n numbers

Output: Arrange the numbers in
increasing order

Remark: Sorting has many applications.

E.g., if the list is already sorted, we can search a
number in the list faster

Insertion Sort

» Operates in n rounds
Swap towards left side ;

* At the k™ round, Stop until seeing an item
with a smaller value.

AWAVAN

T

kth item

Question: Why is this algorithm correct?

4

Selection Sort

» Operates in n rounds

+ At the k'™ round,
- Find minimum item after (k-1)™ position
- Let's call this minimum item X
- Insert X at k™ position in the list

Question: Why is this algorithm correct?

Divide and Conquer

* Divide a big problem into smaller problems
=> solve smaller problems separately
=> combine the results to solve original one

» This idea is called Divide-and-Conquer

- Smart idea to solve complex problems (why?)

» Can we apply this idea for sorting ?

Divide-and-Conquer for Sorting

* What is a smaller problem ?
= E.g., sorting fewer numbers
= Let's divide the list to two shorter lists

* Next, solve smaller problems (how?)

* Finally, combine the results

2 "merging” two sorted lists into a single
sorted list (how?)

Merge Sort

» The previous algorithm, using divide-and-
conquer approach, is called Merge Sort

* The key steps are summarized as follows:
Step 1. Divide list o two halves, A and B
Step 2. Sort A using Merge Sort
Step 3. Sort B using Merge Sort
Step 4. Merge sorted lists of A and B

Question: Why is this algorithm correct?

8

Analyzing the Running Times

* Which of previous algorithms is the best?

» Compare their running time on a computer
- But there are many kinds of computers !l

Standard assumption: Our computer is a RAM

(Random Access Machine), so that
- each arithmetic (such as +, —, x, +), memory access,

and control (such as conditional jump, subroutine call,
return) takes constant amount of time

Analyzing the Running Times

» Suppose that our algorithms are now
described in terms of RAM operations

=> we can count # of each operation used
=> we can measure the running time |

* Running time is usually measured as a
function of the input size

- E.g., nin our sorting problem

10

Insertion Sort (Running Time)

The following is a pseudo-code for Insertion Sort.
Each line requires constant RAM operations.

INSERTION-SORT (A) cost times
1 for j < 2tolength[A] cpL, n
2 do key < A[j] co, n—1
3 > Insert A[j] into the sorted
sequence A[1..j —1]. O n—1
4 i «— j—1 cs, n—1
5 while i > 0 and A[i] > key Cs Z'}zz £
6 do A[i + 1] <« Ali] Cé Z'}zz(tj — 1)
7 [«—1—1 C7 Z'}zz(tj — 1)
8 Ali + 1] « key cg n—1

tj = # of times Key is compared at round j 11

Insertion Sort (Running Time)

» Let T(n) denote the running time of
insertion sort, on an input of size n

* By combining terms, we have
T(n) = cin + (Ca*carcg)(n-1) + cs2t+
(ce+cy) 2 (t;- 1)

* The values of t; are dependent on the
input (not the input size)

12

Insertion Sort (Running Time)

+ Best Case:

The input list is sorted, so that all 1, = 1
Then, T(n) = ¢;n + (c,+c +Cs+Cg)(n-1)

= Kn+ ¢ =» linear function of n
+ Worst Case:

The input list is sorted in decreasing
order, so that all t;= j-1

Then, T(n) = K;n? + K;n + K4
= quadratic function of n

13

Worst-Case Running Time

In our course (and in most CS research),
we concentrate on worst-case time

Some reasons for this:
1. Gives an upper bound of running time
2. Worst case occurs fairly often

Remark: Some people also study average-case
running time (they assume input is
drawn randomly)

14

Try this at home

* Revisit pseudo-code for Insertion Sort
- make sure you understand what's going on

 Write pseudo-code for Selection Sort

15

Merge Sort (Running Time)

The following is a partial pseudo-code for Merge Sort.

MERGE-SORT(A, p, 1)

1 ifp<r

2 theng < |(p+1r)/2]
MERGE-SORT(A, p, q)
MERGE-SORT(A,q + 1,r)
MERGE(A, p,q,r)

The subroutine MERGE(A,p,q.r) is missing.
Can you complete it?
Hint: Create a temp array for merging

W B W

16

Merge Sort (Running Time)

» Let T(n) denote the running time of
merge sort, on an input of size n

+ Suppose we know that Merge() of two
lists of total size nruns in c,n time

» Then, we can write T(n) as:

T(n) =2T(n/2)+cin+c, whenn>1
T(n) = c; whenn=1
» Solving the recurrence, we have

* T(n) =K;nlogn + K,n + Kj;

17

Which Algorithm is Faster?

» Unfortunately, we still cannot tell
- since constants in running times are unknown

» But we do know that if nis VERY large,
worst-case time of Merge Sort must be
smaller than that of Insertion Sort

* Merge Sort is asymptotically faster than
Insertion Sort

18

