
1

CS4311
Design and Analysis of

Algorithms

Lecture 1: Getting Started

2

•Study a few simple algorithms for sorting
–Insertion Sort
–Selection Sort
–Merge Sort

•Show why these algorithms are correct
•Try to analyze the efficiency of these

algorithms (how fast they run)

About this lecture

3

Input: A list of n numbers
Output: Arrange the numbers in

increasing order

Remark: Sorting has many applications.
E.g., if the list is already sorted, we can search a

number in the list faster

The Sorting Problem

4

•Operates in n rounds
•At the kth round,

Insertion Sort

……
kth item

Swap towards left side ;
Stop until seeing an item
with a smaller value.

Question: Why is this algorithm correct?

5

•Operates in n rounds
•At the kth round,

–Find minimum item after (k-1)th position
–Let’s call this minimum item X
–Insert X at kth position in the list

Question: Why is this algorithm correct?

Selection Sort

6

•Divide a big problem into smaller problems
 solve smaller problems separately
 combine the results to solve original one

•This idea is called Divide-and-Conquer

•Smart idea to solve complex problems (why?)

•Can we apply this idea for sorting ?

Divide and Conquer

7

•What is a smaller problem ?
 E.g., sorting fewer numbers
 Let’s divide the list to two shorter lists

•Next, solve smaller problems (how?)

•Finally, combine the results
 “merging”two sorted lists into a single

sorted list (how?)

Divide-and-Conquer for Sorting

8

•The previous algorithm, using divide-and-
conquer approach, is called Merge Sort

•The key steps are summarized as follows:
Step 1. Divide list to two halves, A and B
Step 2. Sort A using Merge Sort
Step 3. Sort B using Merge Sort
Step 4. Merge sorted lists of A and B

Merge Sort

Question: Why is this algorithm correct?

9

•Which of previous algorithms is the best?

•Compare their running time on a computer
–But there are many kinds of computers !!!

Standard assumption: Our computer is a RAM
(Random Access Machine), so that
–each arithmetic (such as , , ,), memory access,

and control (such as conditional jump, subroutine call,
return) takes constant amount of time

Analyzing the Running Times

10

•Suppose that our algorithms are now
described in terms of RAM operations
 we can count # of each operation used
 we can measure the running time !

•Running time is usually measured as a
function of the input size
–E.g., n in our sorting problem

Analyzing the Running Times

11

Insertion Sort (Running Time)

The following is a pseudo-code for Insertion Sort.
Each line requires constant RAM operations.

tj = # of times key is compared at round j

12

•Let T(n) denote the running time of
insertion sort, on an input of size n

•By combining terms, we have

T(n) = c1n + (c2+c4+c8)(n-1) + c5tj +

(c6+c7) (tj –1)

•The values of tj are dependent on the
input (not the input size)

Insertion Sort (Running Time)

13

•Best Case:
The input list is sorted, so that all tj = 1
Then, T(n) = c1n + (c2+c4+c5+c8)(n-1)

= Kn + c linear function of n
•Worst Case:

The input list is sorted in decreasing
order, so that all tj = j-1
Then, T(n) = K1n2 + K2n + K3

 quadratic function of n

Insertion Sort (Running Time)

14

• In our course (and in most CS research),
we concentrate on worst-case time

• Some reasons for this:
1. Gives an upper bound of running time
2. Worst case occurs fairly often

Remark: Some people also study average-case
running time (they assume input is
drawn randomly)

Worst-Case Running Time

15

Try this at home

•Revisit pseudo-code for Insertion Sort
–make sure you understand what’s going on

•Write pseudo-code for Selection Sort

16

Merge Sort (Running Time)

The following is a partial pseudo-code for Merge Sort.

The subroutine MERGE(A,p,q,r) is missing.
Can you complete it?
Hint: Create a temp array for merging

17

•Let T(n) denote the running time of
merge sort, on an input of size n

•Suppose we know that Merge() of two
lists of total size n runs in c1n time

•Then, we can write T(n) as:
T(n) = 2T(n/2) + c1n + c2 when n > 1
T(n) = c3 when n = 1

•Solving the recurrence, we have
•T(n) = K1 n log n + K2 n + K3

Merge Sort (Running Time)

18

•Unfortunately, we still cannot tell
–since constants in running times are unknown

•But we do know that if n is VERY large,
worst-case time of Merge Sort must be
smaller than that of Insertion Sort

•Merge Sort is asymptotically faster than
Insertion Sort

Which Algorithm is Faster?

