
CS4311 Design and Analysis of Algorithms

Homework 2

Due: 11:10 am, March 19, 2008 (before class)

1. John, after taking the lecture on asymptotic notation, has tried to prove that

1 + 2 + · · ·+ n = O(n).

His proof is by induction, where he attempts to show 1 + 2 + . . . + i = O(n) for all i ≥ 1.

The following is his proof:

1. First, 1 = O(n), so that the base case (i = 1) is true.

2. Assume that the statement is true for all i = 1, 2, . . . , k.

3. Then, by the above assumption, we have

1 + 2 + · · ·+ k + (k + 1) = O(n) + (k + 1).

Since O(n) + (k + 1) = O(n), we have

1 + 2 + · · ·+ k + (k + 1) = O(n),

thus showing the inductive case is correct.

4. By mathematical induction, the statement is true for all i ≥ 1, so that

1 + 2 + · · ·+ n = O(n).

(25%) Obviously, you know for sure that 1 + 2 + · · · + n = n(n + 1)/2 = Θ(n2), so that
there must be something wrong in John’s proof. Can you find the error?

2. In the lecture, we have seen that insert operation in a heap T can be done as follows:

1. Construct a node ` storing the new number;

2. Add ` as a leaf in T , such that after the modification, T will still satisfy
the shape property;

3. Set node x = `;

4. while (x is not root and number in x ≤ number in parent of x)
{

Swap the numbers in x and in parent of x;
Update x to become parent of x;

}

(25%) Show that the above procedure correctly restores the heap property.

3. Peter has given you an array A of n distinct numbers, and he wants you to sort A for
him. Further, Peter has informed you that the array is nearly sorted: for each number, its

1

97810562143

Figure 1: A nearly sorted array when d = 3.

current position (in A) and its correct position (when sorted) differ by at most d positions.
Precisely, the kth smallest number is now stored at A[j] with k − d ≤ j ≤ k + d.

See Figure 1 for an example of a nearly sorted array when d = 3.

(a) (25%) Give an O(n log d)-time algorithm to sort A.

(b) (25%) Show that your algorithm is correct.

2

